

DELIVERABLE 6.2

Deliverable 6.2
Cross-Lingual Semantic Search

Grant Agreement number: 250467

Project acronym: ATLAS

Project type: Pilot B

 Deliverable D 6.2 CLIR Tool 13.07.2012

Project coordinator name, title and organisation:

Anelia Belogay, CEO; Diman Karagiozov, CTO
Tetracom Interactive Solutions
Tel: +35924950444
Fax: +35924950443
E-mail:anelia@tetracom.com, diman@tetracom.com
Project website address: www.atlasproject.eu

Authors:

Ronald Winnemöller, Cristina Vertan, Diman Karagiozov
Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination level: PUBLIC

page 1 / 39

mailto:diman@tetracom.com
mailto:diman@tetracom.com
mailto:diman@tetracom.com
mailto:diman@tetracom.com
mailto:diman@tetracom.com
http://www.atlasproject.eu
http://www.atlasproject.eu
http://www.atlasproject.eu
http://www.atlasproject.eu
http://www.atlasproject.eu
http://www.atlasproject.eu

DELIVERABLE 6.2

Document history
Revision Date Author Description

0.1 28 June 2012 Ronald Winnemöller,
University of Hamburg

initial version

0.2 04 July 2012 Cristina Vertan,
University of Hamburg

feedback, minor adjustments

0.4 10 July 2012 Diman Karagiozov,
Tetracom

document review

1.0 13 July 2012 Anelia Belogay,
Tetracom

final version

Statement of originality
This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others has
been made through appropriate citation, quotation or both.

page 2 / 39

DELIVERABLE 6.2

Table of contents

Document history
Statement of originality
Introduction
Theoretic Fundamentals

The Notion of “Semantics” in the ATLAS CLIR Environment
The concept of Cross-Linguality

Basic Technical Principals
Ontologies
Using Search Engines for RDF Storage
Enterprise Service Bus (ESB) Technology

Architecture and Implementation
Architecture
Implementation

Nebula5
External Software

Apache ServicMix
Maven
OSGi Component Building
Apache Camel
ActiveMQ and JMS

ATLAS assembly
Installation and Configuration

Requirements
Installation
Configuration
Starting, Stopping, Inspecting, Access

Test results
Appendix A: ATLAS RDF Schema, Examples

Third-party Software Descriptions
Apache ServiceMix
Apache Camel
Open Service Gateway initiative framework (OSGi)
Apache ActiveMQ and JMS Technology
Solr and Lucene
Search document and Query syntax

RDF Schemata
RDF
RDF Schemata
OWL
External Schemata

Dublin Core
Friend of a Friend (FOAF)
OSCAF/NEPOMUK Ontologies

ATLAS Schemata
Sample Data

The default ATLAS Assembly XML
ATLAS Test client

page 3 / 39

DELIVERABLE 6.2

Introduction
This document describes the deliverable 6.2 "Cross-Lingual Semantic Search" of the Work
Package 6 of the ATLAS project.

The ATLAS project itself as well as the individual work packages are described well by the
ATLAS web homepage:

“ATLAS (Applied Technology for Language-Aided CMS) is a project funded by the
European Commission under the CIP ICT Policy Support Programme. Its main
purpose is to facilitate the multilingual Web content development and management,
in particular the authoring, versioning and maintenance of multilingual Web sites.”
(Quotation from <http://www.atlasproject.eu/atlas/project/en>, accessed 15.06.2012)

“The goal of this package 6 is to integrate into ATLAS two important multilingual
technologies: machine translation and cross-lingual retrieval. Machine translation will
ensure that ATLAS-content could be made available in several languages, or that
third-party-content could be translated and integrated into a web-page. Cross-lingual
retrieval will give users the opportunity to rapidly access documents inside ATLAS
and the online content services independent of the language.”
(Quotation from <http://www.atlasproject.eu/atlas/project/wp6>, accessed
15.06.2012)

Deliverable 6.2, is created by Ronald Winnemöller, member of the regional computer
centre of the University of Hamburg. Ronald Winnemöller is both researcher in the field
of semantically oriented natural language processing and IT practitioner at the computer
centre. The work of Dr. Winemöller is part of the own contribution of the university of
Hamburg.

Deliverable 6.2, a Cross-Lingual Semantic Search is needed within a language-aided CMS
framework such as the one ATLAS produces because:

● One of the priorities of the target CMS is multi-linguality. This also involves the
desire for cross-lingual functionalities such as placing a query in one language
and retrieving documents in a specific (different) language, specifically retrieving
automatically translated response documents.

● Faceted search can be greatly enhanced by targeting specific query parameters
when these parameters can by analyzed semantically prior to the actual search. For
example, when searching for a "person" typed parameter, the system should also
infer to retrieve documents addressing "professors", "lawyers", "administrators" etc.

● Especially in combination with the categorization engine (WP3 - Automatic Text
Categorization), this semantic process can lead to a robust yet precise two-phased
retrieval process that guides users quickly to the desired information.

The main goal of Deliverable 6.2 is the creation of a retrieval engine that
● supports the notion of cross-linguality, i.e. that addresses language-related issues

explicitly;
● supports semantic search applications in which users have some degree of freedom

to formulate robust queries that are used by the engine to retrieve a set of documents
which are further processed by a pre-built precise selection and construction phase
in which the data can be further analyzed and enhanced;

● is easily embeddable into the framework built by the ATLAS consortium.

page 4 / 39

DELIVERABLE 6.2

The remainder of this document:
1. clarifies the notions of "cross-linguality" and "semantics" applied to the retrieval

engine;
2. gives a short introduction to some utilized concepts of the "semantic web", i.e. RDF,

RDF-schema and OWL and to some of the more technical aspects of the underlying
search engine employed by Deliverable 6.2;

3. describes the architecture and implementation details of the retrieval engine built for
ATLAS;

4. provides information for installing and configuring the retrieval engine;
5. presents some results on a set of input test documents provided by the CMS

developers;

Theoretic Fundamentals
In this section, we explain our fundamental assumptions regarding the notion of semantics
and of cross-linguality, the building blocks of the ATLAS CLIR engine.

The Notion of “Semantics” in the ATLAS CLIR Environment
(The following section content is a quotation from: Ronald Winnemöller (2009). “Semantic
Enterprise Search (but no Web 2.0)”, In: Alexander Gelbukh (Hrsg.): 10th International
Conference on Intelligent Text Processing and Computational Linguistics. Mexico City,
Mexico: Instituto Politecnico Nacional, Reihe Polibits, S. 11-19.)

In order to clarify what we are talking about, we need to discuss what we mean when
using the term “knowledge”. Unfortunately, even a superficial definition of the nature
of “knowledge” is far beyond the scope of a paper like this one but we would like to prevent
some common issues:

1. We don’t discuss open philosophical issues here (especially we will not argue about
truth conditions, belief or justification). Instead, we see “knowledge” in very narrow
technical terms as intentionally stored or transmitted information, usually – but not
necessarily – contained in electronically represented documents within a specific
organization;

2.Despite what we just claimed, “knowledge” does not equal ”document content”
but rather the information contained therein. This leads to the thought that even
though “documents” usually are the unit of retrieval (cf. Mika et al1), it does not
necessarily mean that documents are the basic unit of a storing and indexing
process. For instance, there might be transient (e.g. streamed RSS) forms of data
that can not be encompassed by the document metaphor. On the other hand,
single documents may contain many differently motivated informational items;

3. In the same way as in the previous point, knowledge may be distributed across
several source documents (or streams), linguistic or ontological information does
not need to be symbolic but can be spread across “meaning aspects” (as discussed

1 P. Mika, “Microsearch: An interface for semantic search,” in Proceedings of the Workshop on
Semantic Search (SemSearch 2008), Tenerife, Spain, June 2008, pp. 79–88

page 5 / 39

DELIVERABLE 6.2

2004 by Winnemöller2) or across concepts (as in e.g. neuronal networks3);
4.Knowledge by our means is seldom static or monotonous, especially in the
context of textual data streams.

Another important question is what we try to mend when “searching for knowledge”, i.e. what
it means not to know (something):

Smithson constructed a taxonomy of ignorance4, based on the notions of error (bias,
inaccuracy and confusion) and irrelevance (“mistaking some criterion as support
for an argument when it has no bearing on its truth or falsehood”), based on his
observations about the role of informational errors. His hypothesis is that not only
knowledge is a socially constructed artifact, represented and communicated through
symbolic frameworks, but that this is true for ignorance, too. He stated that in order
to understand how and why people seek information, and how knowledge is linked
with behavior, knowledge about both (perceived) relevance and irrelevance, objective
knowledge and ignorance is fundamental.

We conclude from Smithsons findings, that in order to create an ultimately successful
service for institutional information retrieval, at first the semantics of knowledge (and its
absence) should be made explicit and clear.

So, where is that “semantics”? Where do we state ignorance and where should we create
knowledge? When looking at web documents, for example, we see that they usually
reflect an intentional act to represent and communicate knowledge. On the other hand,
one common act to represent and communicate ignorance (as defined by Smithson) are
search queries. Trivially, search engines use the first acts to solve issues of the latter ones
- but there is one major problem: the documents are created prior to the queries; in terms
of software development: they exist at compile time (when the search engine index is
compiled). Queries, on the other hand, come into life at run time. Thinking about this, it does
seem awkward that an answer (“Answer” being a socially constructed artifact just as well)
should exist prior to its question!

Unfortunately, current search engine technology is mostly based on (syntactic) open web
search, which in turn is based on common information retrieval techniques. These provide
only basic tools, which are not very effective in a highly socialized and information-wise fine
grained environment.

Other tools, like link structure exploitation, also don’t work too well here5. To be more
specific: while intranet recall seems an issue of providing a highly customized technical
solution, the precision of search results can - by definition - only be raised by tuning the
search engines relevancy algorithms.

2 R. Winnemöller, “Constructing text sense representations,” in ACL 2004: Second Workshop on
Text Meaning and Interpretation, G. Hirst and S. Nirenburg, Eds. Barcelona, Spain: Association for
Computational Linguistics, July 2004, pp. 17–24.
3 G. Dorffner, Konnektionismus: Von neuronalen Netzwerken zu einer "natürlichen" KI, ser. Leitfäden
der angewandten Informatik. Stuttgart: Teubner, 1991.
4 M. Smithson, “Ignorance and science - dilemmas, perspectives, and prospects,” Science
Communications, vol. 15, no. 2, pp. 133–156, 1993.
5 G.-R. Xue, H.-J. Zeng, Z. Chen, W.-Y. Ma, H.-J. Zhang, and C.-J. Lu, “Implicit link analysis for small
web search,” in SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR conference on
Research and development in informaion retrieval. New York, NY, USA: ACM, 2003, pp. 56–63.

page 6 / 39

DELIVERABLE 6.2

Semantic Web methods on the other hand are well suited to shape indexed knowledge
according to the real informational situation and needs of institution members. Providing
semantically rich machine readable information about resources and the principle of
distributed extensibility are key aspects of the Semantic Web theory. Yet, one major
drawback is that they still depend on a large amount of manual annotation work (sometimes
it is simply assumed that the WWW will eventually contain appropriately annotated
resources6.

This indeed is one well-known problem of knowledge engineering, that annotating text
basically is a huge amount of work with no apparent use to the annotator himself. Even
in cases where people apparently want to annotate text (e.g. via the so-called “Web 2.0”
technologies, i.e. folksonomies and such) they do it rather in a way that they gain reputation
in their respective community but not in order to provide semantic annotations for automatic
information retrieval7.

Because of this issue, we think that annotation must come from automatic methods, if they
are to be employed on large volumes of data.

Furthermore, we like the view of Chakrabarti that schema-free searches must be enabled,
but schema knowledge should be honored by a query language (this enables freetext
keyword searches but still rewards complex processing)8. While following his advice forbids
using strict schematic query wizards or formalized query languages (as proposed by
Cunningham et al9 and Codina et al10), it reveals the necessity for applying NLP methods
(and enabling manual editing) in order to discover semantic relationships within the data.

The concept of Cross-Linguality
One of the ATLAS basic concepts is the multilinguality of the content stored within the
ATLAS applications. This has several implications:

1.Most documents that are imported into the applications database are only
available in a subset of the targeted languages, commonly they will be single-
language documents. This leads to the necessity of translating them into the other
languages.

2. As stated in the previous section, not only the properties of knowledge have to be
identified but also the ones of ignorance. Fairly obvious, this means that not only the
documents are translated and stored but also provisions have to be made for queries
in several different languages.

6 R. Guha, R. McCool, and E. Miller, “Semantic search,” in The Twelfth International World Wide Web
Conference (WWW2003), Budapest, Hungary, May 2003.
7 P. Mika, “Microsearch: An interface for semantic search,” in Proceedings of the Workshop on
Semantic Search (SemSearch 2008), Tenerife, Spain, June 2008, pp. 79–88.
8 S. Chakrabarti, “Building blocks for semantic search engines: Ranking and compact indexing
in entity-relation graphs,” in IIIA-2006: International Workshop on Intelligent Information Access.
Helsinki, Finland, July 2006.
9 H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan, “Gate: A framework and graphical
development environment for robust nlp tools and applications,” in Proceedings of the 40th Annual
Meeting of the ACL, 2002
10 J. Codina, E. Pianta, S. Vrochidis, and S. Papadopoulos, “Integration of semantic, metadata and
image search engines with a text search engine for patent retrieval,” in ESWC-SemSearch 2008,
Tenerife, Canary Islands, Spain, June 2008, pp. 14–28.

page 7 / 39

DELIVERABLE 6.2

In the context of the CLIR engine, Point 2 is important: obviously, translating queries "on-the-
fly" is computationally expensive, so an a-priori solution has to be identified. In this case, the
situation is fortunate:

● All documents are translated during or before the indexing stage so that at a
robust search-engine level, the retrieval mechanism can be language-agnostic, i.e.
search for text occurrence without the need of query translation;

● During phases of fine-grained query handling, textual properties are tagged by their
respective language so that only text in the relevant language(s) are eventually
returned to the user.

● The CMS system can offer to switch off language recognition which means that
documents in any configuration of languages can be returned to the user.

Cross-linguality is therefore achieved in a programmatically transparent fashion, i.e. by
ignoring language at a broad level and following tagged data at finer levels. Since the index
documents are processed by the ATLAS NLP pipelines beforehand, the text language is
already known and tagging is a trivial task.

Basic Technical Principles

Apart from theoretical considerations, technological issues play a vital role in the ATLAS
project and also in the CLIR subproject. In this section, therefore, we will explain some basic
technical items.

Ontologies
Schemata and ontologies are the semantic building stones of the Nebula5 system. All
statements, i.e. "knowledge" (and "ignorance", i.e. queries) are based on RDF, RDF-
Schema, OWL and individual ontologies, such as FOAF11 or the Nepomuk ontologies12.

The search phase uses these ontologies to generalize class and property information and
the RDF query phase can be parameterized in order to use ontological logics. All documents
that are indexed should conform to one or more schemata – apart from the technical
implementation, this also serves as important developer documentation repository for the
individual properties of the indexed documents.

It is therefore important, to know the very fundamentals of these principles in order to
understand how to configure the system in order to operate properly. In the Appendix, RDF,
RDF-Schema and OWL will be introduced briefly.

Since these topics have been discussed very thoroughly by other parties and this report
is not a genuine scientific paper, we will constrain ourselves to quoting the relevant web
sources in the appendix.

Using Search Engines for RDF Storage
The search engine used by Nebula5 is Apache Lucene, realized by the Apache SOLR
search server that either runs embedded by a Nebula5 component within ServiceMix or

11 http://www.foaf-project.org/
12 http://www.semanticdesktop.org/ontologies/

page 8 / 39

DELIVERABLE 6.2

is started externally and just accessed by the internal component, allowing for simple
distribution of load volume.
Lucene is, in a sense, typical for so-called "NoSQL" databases as it uses a simple "search
document" metaphor: a "document" is just a set of field-value pairs of the datatype string. A
typical document may look like this:

id: 2348727733
creation-date: 2012-06-27
text: The search engine used by Nebula5 is Apache Lucene
author: Ronald Winnemöller
author: Winston Churchill

Querying for documents means querying the content of these fields by applying the Lucene
search syntax (this syntax is included by quotation in the appendix). Result of a search is a
set of documents. For example, the above displayed example document may be returned by
queries like:

<text:Lucene>
<author:Churchill>
<creation-date:2012* AND text:engine>
etc...

Obviously, the semantical aspects are very limited in this approach. For this reason, the
core component of Nebula5, the RDFIndex wraps a SOLR/Lucene service but before the
actual storage action, incoming RDF messages are translated into search documents by
preserving the semantic structure of the RDF models and enriching the search documents
by the semantic content at the same time.

The process translates RDF predicates and literal objects into search fields and values and
it also integrates some message metadata such as a unique identifier, security information
(ACLs), creation-date information and more. Namespaces are stripped and included
separately.

Example: The following document represents an incoming RDF model.

<document
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:altas="http://www.atlas.org/ontology/1.0/"
xml:lang="en">

<dc:author>

<foaf:firstname>Jimmy</foaf:firstname>
<foaf:lastname>Bondi</foaf:lastname>

</dc:author>
<dc:title xml:lang="de"> ...german title ...</dc:title>
<atlas:category>/general/law/bulgarian/civil law</atlas:category>

</document>

page 9 / 39

DELIVERABLE 6.2

This RDF model will be translated into the following search document:

id urn:n5:sample2348727733

creation-date 2012-06-27

namespace DC http://purl.org/dc/elements/1.1/

namespace FOAF http://xmlns.com/foaf/0.1/

namespace ATLAS http://www.atlas.org/ontology/1.0/

_firstname Jimmy

_lastname Bondi

_title ...german title ...

_category general , law , bulgarian , civil law

content <document xmlns:dc="http://purl.org/dc/
elements/1.1/" xmlns:foaf="http://
xmlns.com/foaf/0.1/" xmlns:altas="http://
www.atlas.org/ontology/1.0/"

xml:lang="en"><dc:author><foaf:firstname>Jimmy</
foaf:firstname><foaf:lastname>Bondi</foaf:lastname></
dc:author><dc:title xml:lang="de">german

title</dc:title><atlas:category>/general/
law/bulgarian/civil law</atlas:category>

</document>

At this point, one can search not only by querying the fulltext serialization of the RDF model
(field “content”) but also specific properties of the model (“title”, “firstname”, etc...).

The RDFIndex component further includes a simple approach to incorporating RDF
schemata: on initialization it reads RDF schema files from a predefined location and
searches for subclass and subproperty definitions. These definitions are regarded at search
time and queries might be rewritten on the fly before submitted to the underlying search
engine. For example, a RDF schema may include the following definitions:

page 10 / 39

DELIVERABLE 6.2

foaf:firstname subPropertyOf atlas:name
foaf:lastname subPropertyOf atlas:name

A query can now be formulated using these sub-properties:
name: Jimmy

will be expanded to:
name:Jimmy OR firstname:Jimmy OR lastname:Jimmy

The result of such a search is not returned as set of documents but rather a merged
model which is derived by merging the models of the response documents. This enables
a unified view on the search result – the result model constitutes a single microtheory that
is consistent with both the query and the input documents, i.e. it supports the a.m. notion
of knowledge and ignorance. Because the response model is also valid RDF, subsequent
RDF-specific querying can be applied, e.g. running SparQL queries on the model.

Enterprise Service Bus (ESB) Technology
The ESB concept is best described as follows:

“An Enterprise Service Bus (ESB) is a software architecture model used for
designing and implementing the interaction and communication between mutually
interacting software applications in Service Oriented Architecture.

As a software architecture model for distributed computing it is a specialty variant
of the more general client server software architecture model and promotes strictly
asynchronous message oriented design for communication and interaction between
applications. Its primary use is in Enterprise Application Integration of heterogeneous
and complex landscapes.

The word “bus” reflects the analogy to a computer hardware bus that is common
architecture in computer design today. Like in a computer bus it is the basic concept
to allow applications to be easily plugged in and out (switched on and off) of the
network without impact on other components and without the need to restart the
system or even stop running applications.

It is an essential design concept of an ESB that every client directs all its requests
through the ESB instead of passing it directly to a potential server. This indirection
allows the ESB to monitor and log the traffic. The ESB can then intervene in
message exchange and overwrite standard rules for service execution.”13

The ESB therefore constitutes a container for connecting functional components,
component assemblies and other services via an enterprise internal or external messaging
infrastructure.

Many implementations include message transformation and reliable routing services as
well as a multitude of connectors to external services and clients, known as consumers
and producers. Examples of such connectors are Web services messaging standards or

13 Quoation from <http://en.wikipedia.org/wiki/Enterprise_service_bus>, accessed 21.06.2012

page 11 / 39

DELIVERABLE 6.2

Java Message Service (JMS realizations). The ESB technology is an upwards trending
SOA concept : “originally defined by analysts at Gartner, ESB is increasingly seen as a core
component in a service-oriented infrastructure.”14

The Java Business Integration (JBI) specification is commonly used as a standard for
building ESBs: The JBI standard API serves as an interface that allows binding components
and service engines to interact with the ESB. JBI internal messaging is based on so-
called “normalized messages”, i.e. messages that contain a XML body, a set of metadata
headers, optionally binary stream attachments and security subject information.
JBI specifies two types of components:

1. “Service Engines” provide business-logic in an ESB and can also provide data
transformation, routing, scripting and application-specific functionality;

2. “Binding Components” are used to send and receive messages from an environment
external to the ESB. They may implement particular protocols and transports and
usually marshall and unmarshall JBI messages to protocol-specific data formats.

Architecture and Implementation
In this section we present the abstract architecture as well as the actual implementation of
the ATLAS CLIR engine.

Architecture
The ATLAS application assembly consists of several binding component endpoints:

rdfselect1 Applies the default SparQL query to a search result (selects all)

rdfconstruct1 Demo application of introducing new statements, may be used
to implement a (limited) kind of propositional logic.

storagePoller File endpoint; the denoted location can be used to dump RDF
files that will be imported into the RDFIndex

queryPoller File endpoint; XML files that are stored here will be used to
query the RDFIndex

resultSender File endpoint; in case of querying the RDFIndex by using the
queryPoller directory, the result of the search will be stored in
the directory defined by the resultSender.

atlas.store.request.Q JMS endpoint: clients connect to this queue in order to import
documents

atlas.query.request.Q JMS endpoint: clients connect to this queue in order to search
for documents

These BCs are connected via a handful of Apache Camel routes:

14 Cf. J. Jeffrey Hanson, JavaWorld.com, 12.12.2005,
<http://www.javaworld.com/javaworld/jw-12-2005/jw-1212-esb.html>, accessed 22.06.2012

page 12 / 39

DELIVERABLE 6.2

store-jms Routing JMS based messages to the RDFIndex for storage

query-jms Routing JMS based messages to the RDFIndex for search

query-route Routing file based messages to the RDFIndex for storage

store-route Routing file based messages to the RDFIndex for search

The individual routes are represented in the following picture.

Implementation
The implementation of the ATLAS CLIR engine is built in a layered fashion. The top/
application layer constitutes the actual Nebula5 part whereas the lower layers are part of
the Apache ServiceMix distribution and stem from a multitude of open source projects of
whom we will describe the most important ones in this section (mainly by excerpting their
description).

page 13 / 39

DELIVERABLE 6.2

Nebula5
Within Nebula5, we aim for Semantic Search (but not for Semantic Web Search) for
the following reasons: Search is often limited to searching literal text or URI nodes and
is implemented as specific function within a RDF framework (cf. Larq15, Gnowsis16 or
Sesame17). We feel that is an unnecessary limitation because search functionality and RDF
framework functionality should be tightly and efficiently integrated. It also should be possible
to integrate schema information and use description logics and such when required.

We propose that fusing search engine and semantic web technology at the right level, i.e.
enabling semantic annotations and intra-institution-wise distributed extensibility – while
maintaining freetext search functionality – will create a certain amount of synergy which
can raise the effectiveness of a semantic search approach in an institutional (enterprise)
environment.

From our preliminary evaluation of some query logs of our institution we found that queries
are strongly biased towards personal information (~28% of all queries) and organizational
or structural queries, related to the institution (~36%), such as querying for departments,
scripts, elearning courses, etc.. This enterprise-search related aspect of course will have
a great impact on the kind of semantics we need to employ — especially named entity
processing should be treated with high priority.

Furthermore, we think that the approach should be reasonably open to allow for other
kinds of semantics, especially sub-symbolic ones like the TSR-approach proposed 2004 by
Winnemöller18.

Our approach to semantic enterprise search is based on a distributed modular architecture,
named Nebula5.

One of the main differences between our architecture and others (typically similar to the one
described by Lei et al19) is this: while the common approach to freetext semantic search (and
also to semantic query expansion, such as explained by Umbrich and Blohm20 or by Tran et

15 Hewlett-Packard Development Company, “Larq - free text indexing for sparql”, http://
jena.sourceforge.net/ARQ/lucene-arq.html, accessed October 2008.
16 L. Sauermann, G. A. Grimnes, M. Kiesel, C. Fluit, H. Maus, D. Heim, D. Nadeem, B. Horak, and
A. Dengel, “Semantic Desktop 2.0: The Gnowsis Experience,” in Proc. of the ISWC Conference, ser.
Lecture Notes in Computer Science, vol. 4273/2006. Springer Berlin / Heidelberg, Nov 2006, pp. 887–
900
17 E. Minack, L. Sauermann, G. Grimnes, C. Fluit, and J. Broekstra, “The sesame lucene sail: Rdf
queries with full-text search,” NEPOMUK Consortium, Technical Report 2008-1, February 2008.
18 R. Winnemöller, “Constructing text sense representations,” in ACL 2004: Second Workshop on
Text Meaning and Interpretation, G. Hirst and S. Nirenburg, Eds. Barcelona, Spain: Association for
Computational Linguistics, July 2004, pp. 17–24.
19 Y. Lei, V. S. Uren, and E. Motta, “Semsearch: A search engine for the semantic web,” in
Knowledge Acquisition, Modeling and Management (EKAW), S. Staab and V. SvÃ¡tek, Eds.,
Podebrady, Czech Republic, October 2006, pp. 238–245.
20 J. Umbrich and S. Blohm, “Exploring the knowledge in semi structured data sets with rich queries,”
in Proceedings of the Workshop on Semantic Search (SemSearch 2008), Tenerife, Spain, June 2008,
pp. 89–101.

page 14 / 39

DELIVERABLE 6.2

al21) aims to translate natural language queries/ keyword queries into formal expressions –
which are subsequently used to search a model repository for matching RDF statements, we
instead use conventional freetext queries on our RDF documents.

The most important key heuristic is hidden in the postprocessing step of our architecture –
by querying the index we encounter three cases:

1.Using conventional keywords only: documents containing these keywords will
be discovered and ranked according to the Lucene tf*idf scheme. Additionally,
RDF URI nodes can be discovered, too – exploiting the fact that most RDF
URIs contain semantically relevant, human readable parts. For example, a
keyword search for “bob homepage” will also reward indexed items containing

“<foaf:homepage>” – especially when in conjunction to the literal
fragment “bob”. This can be quite useful, because many homepages in an
institutional environment do not explicitly state that they are homepages!

2. Submitting a mixture of keywords and RDF URIs: queries like “foaf:homepage bob”
will find “Bobs homepage” – but not “Jills homepage” with a reference to Bob!
Because Lucene query analyzers eliminate non-alphanumeric characters, a domain-
less URI is treated like a keyword; i.e. the query “:homepage bob” will not be
restricted to the FOAF12 domain but rather work like an ordinary keyword query in
the above explained way. In the special case of web documents containing
microformats such as RDFa these will be implicitly honoured the same way.

3. Submitting RDF URIs only will exhibit documents with certain semantic properties:
the query “foaf:homepage” will return all indexed items that contain homepages in the
sense of the homepage element of the FOAF schema, plus the FOAF schema itself
(as it also contains the fragment “foaf:homepage”).

The query results (possibly filtered by a predefined document relevance threshold or by a
first-N-documents-only heuristic) are merged into a single resulting RDF model that can be
searched by means of templates, implemented structured RDF querying languages, e.g.
SPARQL (cf. Schenk22), in order to provide end-user application functionality.

In this way, a query-centric RDF model is constructed dynamically on each search occasion
that reflects the “ignorance-artifact” created by the user. Because schemata are discovered
as well (and can be further tracked by using the PREFIX RDF document fields), we are
not restricted to structured RDF queries only but can also apply description logics in order
to further examine query results. For example, we can deduce subclassing etc. On the
other hand, when it’s just a portion of the textual content, it is being searched for, we can
simply output the value of the “nie:content” predicate triple. In this way, we are able to defer
complex processing until it is really needed.

(Quotation from: Ronald Winnemöller (2009). “Semantic Enterprise Search (but no Web
2.0)”, In: Alexander Gelbukh (Hrsg.): 10th International Conference on Intelligent Text
Processing and Computational Linguistics. Mexico City, Mexico: Instituto Politecnico
Nacional, Reihe Polibits, S. 11-19.)

Nebula5 is realized as set of RDF-centric components that are integrated into the ServiceMix
service container infrastructure. The ATLAS CLIR engine itself is basically an independent

21 T. Tran, P. Cimiano, S. Rudolph, and R. Studer1, The Semantic Web, ser. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2007, vol. 4825/2008, ch. Ontology-Based
Interpretation of Keywords for Semantic Search, pp. 523–536.
22 S. Schenk, “A sparql semantics based on datalog,” in KI 2007: Advances in Artificial Intelligence.
Springer, 2007, pp. 160–174.

page 15 / 39

DELIVERABLE 6.2

configuration applied to these components and also deployed to the ServiceMix container.

External Software
The Nebula5 system is based on a set of external and publicly available open source
frameworks. Since understanding these components and their role within the framework
is important to understand the overall architecture, the most fundamental ones will be
described in this section (Excerpts from their web or project documentations are included in
the appendix of this document).

Apache ServicMix
Apache ServiceMix is a multi-purpose service container that builds on an OSGi infrastructure
and offers many technologies (such as java messaging, web services, web applications, java
business integration etc.) bundled into a single, consistent provider application. ServiceMix
is an open-source development, but private companies offer consulting and supporting
services.

Maven
Maven is a net-based development project management tool that is tightly integrated into
ServiceMix. Maven enables the service container instance to retrieve dependencies (jar
files that are needed by some installed feature) from local disk locations or from public web
repositories.

OSGi Component Building
ServiceMix contains many individual software components from third-party projects in form
of so-called “bundles”. These bundles are like ordinary java jar files in many respects except
for a handful of specific manifest entries that define external dependencies and how software
may access the classes and services provided by the respective bundle. The main benefits
of OSGi23 are:

●for developers: OSGi reduces dependency and versioning complexity by
providing a modular architecture for (distributed) component-based systems;

● in business terms: The OSGi modularity concept reduces implementation and
operational costs and integrates components in a highly dynamic environment,
successfully aiming at application development, maintenance and remote
service management.

In practical terms, OSGi solves many issues related to jar library versioning, local service
provisioning and library access management. All bundle and feature management functions
(installing new modules, uninstalling modules, starting and stopping services, dependency
management, etc.) within ServiceMix are handled by OSGi.

Apache Camel
Apache Camel is needed for providing connectivity to and from external clients and
services as well as routing document-centric data from the external connectors to the RDF
index database. The routing process may also include transformation processes such as
templating the RDF search results and returning them as HTML or XML document fragments
to the querying party.

ActiveMQ and JMS

23 http://www.osgi.org/Technology/WhyOSGi, accessed 21.06.2012

page 16 / 39

DELIVERABLE 6.2

ActiveMQ as an implementation of the Java Messaging Services (JMS) specification is the
transport technology that connects ATLAS to the Nebula5/ServiceMix environment.

ATLAS assembly
The ATLAS assembly defines some metadata, by which it can identified within the
ServiceMix container:

1. Bundle-Version = 1.0
2. Bundle-Name = Nebula5 :: ATLAS CrossLingual Information Retrieval
3. Bundle-SymbolicName = nebula5-atlas
4. Bundle-Description = CrossLingual Information Retrieval for the ATLAS EU project
5. Bundle-Vendor = ronald.winnemoeller@uni-hamburg.de

The assembly is implemented as Spring-XML file and located in the SERVICEMIX.ROOT/
deploy directory. Any changes to the assembly reflect immediately to the running processes
in case the ServiceMix container is running.

The assembly should be regarded as “default” starting point – without intercepting the
default behaviour, many endpoints and transformations can be added when desired.
The appendix contains example code that can be used as starting point for developing
client-side JMS connectors.

Installation and Configuration
For the ATLAS project we created a graphical installer package that can be started either
from a workbench gui or from the command line. The Nebula5 base framework also comes
with such an installer. Both of them are very standard-like, easy to use and self-documented.

Requirements
There are a few minimum requirements to meet prior to the installation:

● Java 5 or Java 6 (not earlier, and Java 7 will also not work).
● At least 2 GB disk space (the actual size of the index depends on the volume of the

input data. A rough estimate is the size of the input data multipied by 10)
● 2 GB RAM memory
● The JAVA_HOME environment variable must be set correctly.

Installation
The Nebula5 framework can be installed using a convenient pre-built setup program (based
on IzPack24). The ServiceMix ESB is included in the installer and can be installed optionally.
The installer is run by double-clicking its icon or by command-line:

java -jar nebula5-0.3-installer.jar

The installation procedure will ask the usual questions (display README, accept copyright/
license, accept or edit installation directory - defaults to '/srv/servicemix') and the install
about 2GB into the installation location.

24 http://izpack.org/

page 17 / 39

DELIVERABLE 6.2

For ATLAS, it is sufficient to install only the ServiceMix container and the Nebula5
local repository. All other components are not needed and will not work in the ATLAS
environment.

The ATLAS CLIR application is also available as installer and can be installed using the
same procedure. Here, it is vital to use the same installation location as in the previous step.

The ServiceMix container should be started interactively first after running the base installer
(i.e. before the ATLAS installer) in order to correct possible failures within the container shell.
There might be some warnings and even an error concerning the Joda bundle or some
trailing characters in some bundle configuration but this does not affect the ATLAS
application performance. The self-configuration log can be viewed continuously by

log:tail (interrupt with CTRL-C)

or in a "single-shot" fashion by

log:display

The installed bundles are listed by

osgi:list

page 18 / 39

DELIVERABLE 6.2

The console also provides a help feature – just type TAB twice; The console can be shut
down by issuing CTRL-D.

After installation of the ATLAS package, listing the installed bundles should include the
Nebula5 broker and the ATLAS CLIR component and look like this:

Configuration
The ATLAS service assembly can be configured at compile time via the ServiceMix
xmlbeans facilities but the default values should be sufficient for non-clustered
environments.

Starting, Stopping, Inspecting, Access
In order to start the ServiceMix container in server mode, you can use the start command:

${N5HOME}/bin/start

Similarily, use use the stop command in order to stop the ServiceMix container server:

${N5HOME}/bin/stop

Logs will be written to ${N5HOME}/data/log/servicemix.log (Log rotation is active by default,
therefore make sure you inspect the correct log file).

ServiceMix can also be started in an interactive console mode. This can be used to install
further components or employ other maintenance functions. For example, it is possible to
configure ssh shell access to the ServiceMix console to access the ServiceMix instance from
a remote computer:

page 19 / 39

DELIVERABLE 6.2

${N5HOME}/bin/servicemix

Test results
Currently, tests have been performed only on monolingual data. The test corpora consist of
9’000 English and 9’000 Bulgarian short documents, found in the SETimes copus25.

Further tests will be performed as soon as the machine translation engine is ready (due to
month 30, end of August 2012). These tests will also include the full integration in ATLAS
of CLIR, MT and Summarizer engines. The results will be made available at the following
address:

https://docs.google.com/document/d/
1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit

25

Francis M. Tyers and Murat Alperen (2010), "South-East European Times: A parallel corpus of the
Balkan languages".
Jörg Tiedemann, 2009, News from OPUS - A Collection of Multilingual Parallel Corpora with Tools
and Interfaces. In N. Nicolov and K. Bontcheva and G. Angelova and R. Mitkov (eds.) Recent
Advances in Natural Language Processing (vol V), pages 237-248, John Benjamins, Amsterdam/
Philadelphia.

page 20 / 39

https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
https://docs.google.com/document/d/1oo4Qlok2MfbTuFFjvJvi0Nro50rZKb23JmAX2zXjTCI/edit
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf
http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf

DELIVERABLE 6.2

Appendix A: ATLAS RDF Schema, Examples
The appendix contains a mention of the RDF schemata that are used in ATLAS as well as
an example data record.

Third-party Software Descriptions
In this section we provide detailed descriptions of the most important third-party software
components by excerpting the original descriptions from the respective projects website,
accompanying documentation, etc.

Apache ServiceMix
“Apache ServiceMix is a flexible, open-source integration container that unifies the features
and functionality of Apache ActiveMQ, Camel, CXF, ODE, Karaf into a powerful runtime
platform you can use to build your own integrations solutions. It provides a complete,
enterprise ready ESB exclusively powered by OSGi.

It is being released under Apache License v2.

The main features are: reliable messaging with Apache ActiveMQ; messaging, routing and
Enterprise Integration Patterns with Apache Camel; WS-* and RESTful web services with
Apache CXF; loosely coupled integration between all the other components with Apache
ServiceMix NMR including rich Event, Messaging and Audit API; complete WS-BPEL engine
with Apache ODE; OSGi-based server runtime powered by Apache Karaf“
(Quotation from <http://servicemix.apache.org/>, accessed 21.06.2012)

“Apache ServiceMix is an enterprise-class open-source distributed enterprise service bus
(ESB) and service-oriented architecture (SOA) toolkit [disambiguation needed]. It was
built from the ground up on the semantics and APIs of the Java Business Integration (JBI)
specification JSR 208 and released under the Apache License. ServiceMix 4 also fully
supports OSGi. ServiceMix is lightweight and easily embeddable, has integrated Spring
support and can be run at the edge of the network (inside a client or server), as a standalone
ESB provider or as a service within another ESB. You can use ServiceMix in Java SE or
a Java EE application server. ServiceMix uses ActiveMQ to provide remoting, clustering,
reliability and distributed failover. The basic frameworks used by ServiceMix are Spring and
XBean. ServiceMix is often used with Apache ActiveMQ, Apache Camel and Apache CXF in
SOA Infrastructure projects.

Enterprise subscriptions for ServiceMix is available from independent vendors.
Characteristics of an ESB include Federation, clustering and container provided failover; Hot
deployment and lifecycle management of business objects; True vendor independence by
license compliance with the JBI specification“
(Quotation from <http://en.wikipedia.org/wiki/ServiceMix>, accessed 21.06.2012)

Apache Camel
“Apache Camel is a rule-based routing and mediation engine which provides a Java object-
based implementation of the Enterprise Integration Patterns using an API (or declarative
Java Domain Specific Language) to configure routing and mediation rules. The domain-

page 21 / 39

DELIVERABLE 6.2

specific language means that Apache Camel can support type-safe smart completion of
routing rules in an integrated development environment using regular Java code without
large amounts of XML configuration files, though XML configuration inside Spring is also
supported.”
(Quotation from <http://en.wikipedia.org/wiki/Apache_Camel>, accessed 21.06.2012)

“Camel empowers you to define routing and mediation rules in a variety of domain-specific
languages, including a Java-based Fluent API, Spring or Blueprint XML Configuration files,
and a Scala DSL. This means you get smart completion of routing rules in your IDE, whether
in a Java, Scala or XML editor.

Apache Camel uses URIs to work directly with any kind of Transport or messaging model
such as HTTP, ActiveMQ, JMS, JBI, SCA, MINA or CXF, as well as pluggable Components
and Data Format options. Apache Camel is a small library with minimal dependencies for
easy embedding in any Java application. Apache Camel lets you work with the same API
regardless which kind of Transport is used - so learn the API once and you can interact with
all the Components provided out-of-box.

Apache Camel provides support for Bean Binding and seamless integration with popular
frameworks such as Spring, Blueprint and Guice. Camel also has extensive support for unit
testing your routes.”
(Quotation from <http://camel.apache.org/>, accessed 21.06.2012)

Open Service Gateway initiative framework (OSGi)
“The Open Services Gateway initiative framework is a module system and service platform
for the Java programming language that implements a complete and dynamic component
model, something that as of 2012 does not exist in standalone Java/VM environments.
Applications or components (coming in the form of bundles for deployment) can be remotely
installed, started, stopped, updated, and uninstalled without requiring a reboot; management
of Java packages/classes is specified in great detail. Application life cycle management
(start, stop, install, etc.) is done via APIs that allow for remote downloading of management
policies. The service registry allows bundles to detect the addition of new services, or the
removal of services, and adapt accordingly.”
(Quotation from <http://en.wikipedia.org/wiki/Osgi>, accessed 21.06.2012)

Apache ActiveMQ and JMS Technology
“Apache ActiveMQ is an open source (Apache 2.0 licensed) message broker which fully
implements the Java Message Service 1.1 (JMS). It provides "Enterprise Features" like
clustering, multiple message stores, and ability to use any database as a JMS persistence
provider besides VM, cache, and journal persistency.

Apart from Java, ActiveMQ can be also used from .NET, C/C++ or Delphi or from scripting
languages like Perl, Python, PHP and Ruby via various "Cross Language Clients" together
with connecting to many protocols and platforms. These include several standard wire-level
protocols, plus their own protocol called OpenWire.

ActiveMQ is used in enterprise service bus implementations such as Apache ServiceMix,
Apache Camel, and Mule.”
(Quotation from <http://en.wikipedia.org/wiki/Apache_ActiveMQ>, accessed 21.06.2012)

page 22 / 39

DELIVERABLE 6.2

Solr and Lucene
"Apache Lucene(TM) is a high-performance, full-featured text search engine library written
entirely in Java. It is a technology suitable for nearly any application that requires full-text
search, especially cross-platform. Apache Lucene is an open source project available for
free download."
(Quotation from <http://lucene.apache.org/core/>, accessed 21.06.2012)

"The Solr search server powers a wide range of applications such as Netflix, AOL, CNET,
Zappos and many more.

Its major features include powerful full-text search, hit highlighting, faceted search, dynamic
clustering, database integration, rich document (e.g., Word, PDF) handling, and geospatial
search. Solr is highly scalable, providing distributed search and index replication, and it
powers the search and navigation features of many of the world's largest internet sites.

Solr is written in Java and runs as a standalone full-text search server within a servlet
container such as Tomcat. Solr uses the Lucene Java search library at its core for full-text
indexing and search, and has REST-like HTTP/XML and JSON APIs that make it easy to
use from virtually any programming language. Solr's powerful external configuration allows it
to be tailored to almost any type of application without Java coding, and it has an extensive
plugin architecture when more advanced customization is required."
(Quotation from <http://lucene.apache.org/solr/>, accessed 21.06.2012)

Search document and Query syntax
"Search Documents are the unit of indexing and search. A Document is a set of fields. Each
field has a name and a textual value. A field may be stored with the document, in which case
it is returned with search hits on the document. Thus each document should typically contain
one or more stored fields which uniquely identify it."
(Quotation from
<http://lucene.apache.org/core/old_versioned_docs/versions/2_9_0/api/all/org/apache/
lucene/document/Document.html>, accessed 21.06.2012)

The following text is taken verbatim from the lucene query syntax web page26:

Although Lucene provides the ability to create your own queries through its API, it also
provides a rich query language through the Query Parser, a lexer which interprets a string
into a Lucene Query.

A query is broken up into terms and operators. There are two types of terms: Single Terms
and Phrases:

● A Single Term is a single word such as "test" or "hello".
● A Phrase is a group of words surrounded by double quotes such as "hello dolly".

Multiple terms can be combined together with Boolean operators to form a more complex
query (see below).

Lucene supports fielded data. When performing a search you can either specify a field, or

26 http://lucene.apache.org/core/old_versioned_docs/versions/3_0_0/queryparsersyntax.html,
accessed 21.06.2012

page 23 / 39

DELIVERABLE 6.2

use the default field. The field names and default field is implementation specific. You can
search any field by typing the field name followed by a colon ":" and then the term you are
looking for. As an example, let's assume a Lucene index contains two fields, title and text
and text is the default field. If you want to find the document entitled "The Right Way" which
contains the text "don't go this way", you can enter:

title:"The Right Way" AND text:go

or

title:"Do it right" AND right

Lucene supports modifying query terms to provide a wide range of searching options.
Lucene supports single and multiple character wildcard searches within single terms (not
within phrase queries):

● To perform a single character wildcard search use the "?" symbol.
● To perform a multiple character wildcard search use the "*" symbol.

The single character wildcard search looks for terms that match that with the single
character replaced. For example, to search for "text" or "test" you can use the search:

te?t

Multiple character wildcard searches looks for 0 or more characters. For example, to search
for test, tests or tester, you can use the search:

test*

You can also use the wildcard searches in the middle of a term.

te*t

Note: You cannot use a * or ? symbol as the first character of a search.

Lucene supports fuzzy searches based on the Levenshtein Distance, or Edit Distance
algorithm. To do a fuzzy search use the tilde, "~", symbol at the end of a Single word Term.
For example to search for a term similar in spelling to "roam" use the fuzzy search:

roam~

This search will find terms like foam and roams.

Starting with Lucene 1.9 an additional (optional) parameter can specify the required
similarity. The value is between 0 and 1, with a value closer to 1 only terms with a higher
similarity will be matched. For example:

roam~0.8

The default that is used if the parameter is not given is 0.5.

Lucene supports finding words are a within a specific distance away. To do a proximity
search use the tilde, "~", symbol at the end of a Phrase. For example to search for
a "apache" and "jakarta" within 10 words of each other in a document use the search:

page 24 / 39

DELIVERABLE 6.2

"jakarta apache"~10

Range Queries allow one to match documents whose field(s) values are between the
lower and upper bound specified by the Range Query. Range Queries can be inclusive or
exclusive of the upper and lower bounds. Sorting is done lexicographically.

mod_date:[20020101 TO 20030101]

This will find documents whose mod_date fields have values between 20020101 and
20030101, inclusive. Note that Range Queries are not reserved for date fields. You could
also use range queries with non-date fields:

title:{Aida TO Carmen}

This will find all documents whose titles are between Aida and Carmen, but not including
Aida and Carmen. Inclusive range queries are denoted by square brackets. Exclusive range
queries are denoted by curly brackets.

Lucene provides the relevance level of matching documents based on the terms found. To
boost a term use the caret, "^", symbol with a boost factor (a number) at the end of the term
you are searching. The higher the boost factor, the more relevant the term will be. Boosting
allows you to control the relevance of a document by boosting its term. For example, if you
are searching for

jakarta apache

and you want the term "jakarta" to be more relevant boost it using the ^ symbol along with
the boost factor next to the term. You would type:

jakarta^4 apache

This will make documents with the term jakarta appear more relevant. You can also boost
Phrase Terms as in the example:

"jakarta apache"^4 "Apache Lucene"

By default, the boost factor is 1. Although the boost factor must be positive, it can be less
than 1 (e.g. 0.2)

Boolean operators allow terms to be combined through logic operators. Lucene supports
AND, "+", OR, NOT and "-" as Boolean operators(Note: Boolean operators must be ALL
CAPS). The OR operator is the default conjunction operator. This means that if there is
no Boolean operator between two terms, the OR operator is used. The OR operator links
two terms and finds a matching document if either of the terms exist in a document. This
is equivalent to a union using sets. The symbol || can be used in place of the word OR. To
search for documents that contain either "jakarta apache" or just "jakarta" use the query:

"jakarta apache" jakarta

or

"jakarta apache" OR jakarta

page 25 / 39

DELIVERABLE 6.2

The AND operator matches documents where both terms exist anywhere in the text of a
single document. This is equivalent to an intersection using sets. The symbol && can be
used in place of the word AND. To search for documents that contain "jakarta apache"
and "Apache Lucene" use the query:

"jakarta apache" AND "Apache Lucene"

The "+" or required operator requires that the term after the "+" symbol exist somewhere in a
the field of a single document. To search for documents that must contain "jakarta" and may
contain "lucene" use the query:

+jakarta lucene

The NOT operator excludes documents that contain the term after NOT. This is equivalent
to a difference using sets. The symbol ! can be used in place of the word NOT. To search for
documents that contain "jakarta apache" but not "Apache Lucene" use the query:

"jakarta apache" NOT "Apache Lucene"

Note: The NOT operator cannot be used with just one term. For example, the following
search will return no results:

NOT "jakarta apache"

The "-" or prohibit operator excludes documents that contain the term after the "-" symbol. To
search for documents that contain "jakarta apache" but not "Apache Lucene" use the query:

"jakarta apache" -"Apache Lucene"

Lucene supports using parentheses to group clauses to form sub queries. This can be very
useful if you want to control the boolean logic for a query. To search for either "jakarta"
or "apache" and "website" use the query:

(jakarta OR apache) AND website

This eliminates any confusion and makes sure you that website must exist and either term
jakarta or apache may exist.

Lucene supports using parentheses to group multiple clauses to a single field. To search for
a title that contains both the word "return" and the phrase "pink panther" use the query:

title:(+return +"pink panther")

Lucene supports escaping special characters that are part of the query syntax. The current
list special characters are: + - && || ! () { } [] ^ " ~ * ? : \

To escape these character use the \ before the character. For example to search for (1+1):2
use the query:

\(1\+1\)\:2

page 26 / 39

DELIVERABLE 6.2

RDF Schemata
The means of semantic modelling within the Nebula5 framework is taken from the semantic
web efforts, i.e. using UTF-8 as text encoding basis, URIs as identifiers, RDF for modelling
knowledge and querying and RDF-Schema for conceptualizations.

RDF
"The Resource Description Framework (RDF) is a language for representing information
about resources in the World Wide Web. It is particularly intended for representing metadata
about Web resources, such as the title, author, and modification date of a Web page,
copyright and licensing information about a Web document, or the availability schedule for
some shared resource. However, by generalizing the concept of a "Web resource", RDF can
also be used to represent information about things that can be identified on the Web, even
when they cannot be directly retrieved on the Web. Examples include information about
items available from on-line shopping facilities (e.g., information about specifications, prices,
and availability), or the description of a Web user's preferences for information delivery."
(Quotation from <http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#basicconcepts>,
accessed 21.06.2012)

“RDF is intended for situations in which this information needs to be processed by
applications, rather than being only displayed to people. RDF provides a common framework
for expressing this information so it can be exchanged between applications without
loss of meaning. Since it is a common framework, application designers can leverage
the availability of common RDF parsers and processing tools. The ability to exchange
information between different applications means that the information may be made
available to applications other than those for which it was originally created.

RDF is based on the idea of identifying things using Web identifiers (called Uniform
Resource Identifiers, or URIs), and describing resources in terms of simple properties and
property values. This enables RDF to represent simple statements about resources as a
graph of nodes and arcs representing the resources, and their properties and values.”
(Quotation from <http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#basicconcepts>,
accessed 21.06.2012)

“RDF models statements as nodes and arcs in a RDF's graph model. In this notation, a
statement is represented by:

1. a node for the subject
2. a node for the object
3. an arc for the predicate, directed from the subject node to the object node.

In RDF, the English statement:

http://www.example.org/index.html has a creator whose value is John Smith

could be represented by an RDF statement having:
1. a subject http://www.example.org/index.html
2. a predicate http://purl.org/dc/elements/1.1/creator
3. and an object http://www.example.org/staffid/85740

RDF statements are similar to a number of other formats for recording information, such as:

page 27 / 39

DELIVERABLE 6.2

● entries in a simple record or catalog listing describing the resource in a data

processing system.
● rows in a simple relational database.
● simple assertions in formal logic

and information in these formats can be treated as RDF statements, allowing RDF to be
used to integrate data from many sources.”
(Quotation from <http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#rdfmodel>,
accessed 21.06.2012,)

RDF Schemata
“RDF itself provides no means for defining such application-specific classes and properties.
Instead, such classes and properties are described as an RDF vocabulary, using extensions
to RDF provided by the RDF Vocabulary Description Language 1.0, referred to here as RDF
Schema.

RDF Schema does not provide a vocabulary of application-specific classes like
exterms:Tent, ex2:Book, or ex3:Person, and properties like exterms:weightInKg, ex2:author
or ex3:JobTitle.

Instead, it provides the facilities needed to describe such classes and properties, and to
indicate which classes and properties are expected to be used together (for example, to say
that the property ex3:jobTitle will be used in describing a ex3:Person). In other words, RDF
Schema provides a type system for RDF.

The RDF Schema type system is similar in some respects to the type systems of object-
oriented programming languages such as Java. For example, RDF Schema allows
resources to be defined as instances of one or more classes. In addition, it allows classes
to be organized in a hierarchical fashion; for example a class ex:Dog might be defined as a
subclass of ex:Mammal which is a subclass of ex:Animal, meaning that any resource which
is in class ex:Dog is also implicitly in class ex:Animal as well.

However, RDF classes and properties are in some respects very different from programming
language types. RDF class and property descriptions do not create a straightjacket into
which information must be forced, but instead provide additional information about the RDF
resources they describe.”
(Quotation from <http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#rdfschema>,
accessed 21.06.2012)

OWL
“The W3C Web Ontology Language (OWL) is a Semantic Web language designed to
represent rich and complex knowledge about things, groups of things, and relations between
things. OWL is a computational logic-based language such that knowledge expressed in
OWL can be reasoned with by computer programs either to verify the consistency of that
knowledge or to make implicit knowledge explicit. OWL documents, known as ontologies,
can be published in the World Wide Web and may refer to or be referred from other OWL
ontologies. OWL is part of the W3C’s Semantic Web technology stack, which includes RDF,
RDFS, SPARQL, etc.”
(Quotation from <http://www.w3.org/2001/sw/wiki/OWL>, accessed 21.06.2012)

page 28 / 39

DELIVERABLE 6.2

External Schemata
The Nebula5 framework depends semantically on the use of several publicly available base
schemata in order to create corpora that can be read by many independent applications. In
this section we reference the most important ones.

Dublin Core
“Early Dublin Core workshops popularized the idea of "core metadata" for simple
and generic resource descriptions. The fifteen-element "Dublin Core" achieved wide
dissemination as part of the Open Archives Initiative Protocol for Metadata Harvesting (OAI-
PMH) and has been ratified as IETF RFC 5013, ANSI/NISO Standard Z39.85-2007, and ISO
Standard 15836:2009.

The consolidation of RDF motivated an effort to translate the mixed-vocabulary metadata
style of the Dublin Core community into an RDF-compatible DCMI Abstract Model (2005).
The DCMI Abstract Model was designed to bridge the modern paradigm of unbounded,
linked data graphs with the more familiar paradigm of validatable metadata records like
those used in OAI-PMH.”
(Quotation from <http://dublincore.org/metadata-basics/> accessed 22.06.2012)

Friend of a Friend (FOAF)
“FOAF is about your place in the Web, and the Web's place in our world. FOAF is a
simple technology that makes it easier to share and use information about people and their
activities (eg. photos, calendars, weblogs), to transfer information between Web sites, and to
automatically extend, merge and re-use it online.

The Friend of a Friend (FOAF) project is creating a Web of machine-readable pages
describing people, the links between them and the things they create and do.”
(Quotation from <http://www.foaf-project.org/about>, accessed 22.06.2012)

OSCAF/NEPOMUK Ontologies
The vision of the Social Semantic Desktop defines a user’s personal information
environment as a source and end-point of the Semantic Web: Knowledge workers
comprehensively express their information and data with respect to their own
conceptualizations. Semantic Web languages and protocols are used to formalize these
conceptualizations and for coordinating local and global information access. The Resource
Description Framework RDF serves as a common data representation format. We identified
several additional requirements for high-level knowledge representation on the social
semantic desktop. With a particular focus on addressing certain limitations of RDF, we
engineered a novel representational language akin to RDF and the Web Ontology Language
OWL, plus a number of other high-level ontologies.

The specifications for the following published NEPOMUK Ontologies are given below.

NRL is NEPOMUK's Representational Language. Designed on top of RDF, it addresses
certain limitations on the part of RDF/S. In particular it includes support for Named
Graphs, which although being a widely-popular notion, have not been supported by any
representational language so far. It is also based on a view concept for the tailoring of
ontologies. This view concept turned out to be of additional value, as it also provides a
mechanism to impose different semantics on the same syntactical structure.

page 29 / 39

DELIVERABLE 6.2

NAO - The NEPOMUK Annotation Ontology is an ontology for annotation, providing
vocabulary which is commonly required to annotate resources on the semantic desktop.
NAO includes graph metadata vocabulary for describing, or annotating, existing named
graphs.

NIE - The NEPOMUK Information Element set of ontologies provide vocabulary for
describing information elements which are commonly present on the semantic desktop.
The following documents collectively make up the complete specifications for the Nepomuk
Information Element Ontology Framework:

● NIE (core) - NEPOMUK Information Element Core Ontology : The NEPOMUK
Information Element Framework is an attempt to provide unified vocabulary for
describing native resources available on the desktop.

● NFO - NEPOMUK File Ontology: NEPOMUK File Ontology (NFO) intends to
provide vocabulary to express information extracted from various sources.
They include files, pieces of software and remote hosts.

● NCO - NEPOMUK Contact Ontology: NEPOMUK Contact Ontology describes
contact information, common in many places on the desktop. It evolved from the
VCARD specification (RFC 2426) and has been inspired by the Vcard Ontology
by Renato Ianella. The scope of NCO is much broader though.

● NMO - NEPOMUK Message Ontology: NEPOMUK Message Ontology extends the
NEPOMUK Information Element framework into the domain of messages. Kinds of
messages covered by NMO include Emails and instant messages.

● NCAL - NEPOMUK Calendar Ontology: The NEPOMUK Calendaring Ontology
intends to provide vocabulary for describing calendaring data (events, tasks, journal
entries) which is an important part of the body of information usually stored on a
desktop. It is an adaptation of the ICALTZD ontology created by the W3C RDF
Calendar Task Force of the Semantic Web Interest Group in the Semantic Web
Activity.

● NEXIF - NEPOMUK EXIF Ontology: EXIF is a common standard of basic image
metadata used in digital cameras and in image management software. Masahide
Kanzaki created an ontology that allows the EXIF metadata to be expressed in
RDF. NEXIF is a simple adaptation of the Kanzaki's ontology to fit it into the
NEPOMUK Information Element Framework.

● NID3 - NEPOMUK ID3 Ontology: ID3 is a common standard for audio metadata. It
has become widespread with the profusion of MP3 files. The NEPOMUK ID3
ontology (NID3) makes it possible to express ID3 information in RDF, thus bringing it
within reach of RDF-enabled application.

● PIMO - Personal Information Model ontology can be used to express Personal
Information Models of individuals.

● TMO - Task Model Ontology can be used to describe personal tasks of individuals,
as well known as to-do lists.

(Quotation from <http://www.semanticdesktop.org/ontologies/>, accessed 22.06.2012)

ATLAS Schemata
Apart from pre-defined public schemata, the ATLAS CLIR application also uses ATLAS
specific definitions such as "summary", "keyword", "category" etc.:

<?xml version="1.0" encoding="UTF-8" ?>

page 30 / 39

DELIVERABLE 6.2

<rdf:RDF xmlns:n5="http://n5.uni-hamburg.de/ontologies/2009/base#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:rdf="http://

www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#" xmlns:dc="http://purl.org/

dc/elements/1.1/"

xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:nfo="http://

www.semanticdesktop.org/ontologies/2007/03/22/nfo#"

xmlns:nie="http://www.semanticdesktop.org/ontologies/2007/01/19/nie#"

xmlns:tika="http://tika.apache.org/0.9/metadata/"

xmlns:atlasdata="http://www.atlas-project.eu/data/"

xmlns:atlas="http://www.atlas-project.eu/2011.11/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="

http://www.w3.org/1999/02/22-rdf-syntax-ns#

http://www.w3.org/2000/07/rdf.xsd

http://purl.org/dc/elements/1.1/

http://dublincore.org/schemas/xmls/qdc/2008/02/11/dc.xsd

http://xmlns.com/foaf/0.1/

http://friend2friend.net/docs/xml-datatypes/foaf/foaf.xsd

">

<!--

ONTOLOGY :

Dublin Core + FOAF + Nepomuk Ontologies

+ additional ATLAS properties as defined below (extendable on

demand)

-->

<rdf:Description rdf:about="http://www.atlas-project.eu/2011.11/Configuration">

<rdfs:comment>

Base objects for configuring the Nebula5 ATLAS JMS

Marshalling

</rdfs:comment>

<rdfs:label>Configuration</rdfs:label>

</rdf:Description>

<rdf:Description rdf:about="http://www.atlas-project.eu/2011.11/Document">

<rdfs:comment>

ATLAS RDFXML Document

</rdfs:comment>

<rdfs:label>Document</rdfs:label>

</rdf:Description>

<rdf:Property rdf:about="http://www.atlas-project.eu/2011.11/summary">

<rdfs:comment>

Automatically derived summary of ATLAS source document

fulltext

</rdfs:comment>

<rdfs:label>summary</rdfs:label>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Document"/>

</rdf:Property>

<rdf:Property rdf:about="http://www.atlas-project.eu/2011.11/keywords">

<rdfs:comment>

Automatically derived keywords from ATLAS source document

fulltext

</rdfs:comment>

<rdfs:label>summary</rdfs:label>

page 31 / 39

http://www.atlas-project.eu/2011.11/Configuration
http://www.atlas-project.eu/2011.11/Configuration
http://www.atlas-project.eu/2011.11/Configuration
http://www.atlas-project.eu/2011.11/Configuration
http://www.atlas-project.eu/2011.11/Configuration
http://www.atlas-project.eu/2011.11/Configuration
http://www.atlas-project.eu/2011.11/Configuration
http://www.atlas-project.eu/2011.11/Configuration
http://www.atlas-project.eu/2011.11/Configuration
http://www.atlas-project.eu/2011.11/Configuration
http://www.atlas-project.eu/2011.11/Configuration

DELIVERABLE 6.2

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Document"/>

</rdf:Property>

<rdf:Property rdf:about="http://www.atlas-project.eu/2011.11/categories">

<rdfs:comment>

Automatically derived categories from ATLAS source document

fulltext

</rdfs:comment>

<rdfs:label>summary</rdfs:label>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Document"/>

</rdf:Property>

</rdf:RDF>

Sample Data
For a quick overview of actual data, we provide a simple example:

<!-- original doc in english language, specific entries in other languages -->

<document

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:altas="http://www.atlas.org/ontology/1.0/"

id="12345"

xml:lang="en">

<dc:author>

<foaf:firstname>James</foaf:firstname>

<foaf:lastname>Bond</foaf:lastname>

</dc:author>

<dc:author>

<foaf:firstname>Jimmy</foaf:firstname>

<foaf:lastname>Bondi</foaf:lastname>

</dc:author>

<dc:title xml:lang="de"> ...german title ...</dc:title>

...

<atlas:summary xml:lang="fr"> ... summary </atlas:summary>

<atlas:summary xml:lang="cz"> ... summary </atlas:summary>

<atlas:summary xml:lang="en"> ... summary </atlas:summary>

<foaf:page> ... source location </foaf:page>

<atlas:category>/general/law/bulgarian/civil law</atlas:category>

<!-- the following elements are "future tech 1" -->

<atlas:ne xml:lang="cz"> ... personname/locname/etc. .. </atlas:ne>

<atlas:ne xml:lang="cz"> ... personname/locname/etc. .. </atlas:ne>

<atlas:ne xml:lang="fr"> ... personname/locname/etc. .. </atlas:ne>

...

</document>

page 32 / 39

DELIVERABLE 6.2

The default ATLAS Assembly XML
The assembly file defines the endpoints, routes and transformations that really create the
ATLAS application:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:atlasdata="http://www.atlas-project.eu/data"

xmlns:atlas="http://www.atlas-project.eu/2011.11"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:util="http://www.springframework.org/schema/util"

xmlns:osgi="http://www.springframework.org/schema/osgi"

xmlns:camel="http://camel.apache.org/schema/spring"

xmlns:broker="http://activemq.apache.org/schema/core"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="

http://activemq.org/config/1.0

http://activemq.apache.org/schema/core/activemq-core-5.6.0.xsd

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/util

http://www.springframework.org/schema/util/spring-util.xsd

http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd

http://www.springframework.org/schema/osgi-compendium

http://www.springframework.org/schema/osgi-compendium/spring-osgi-

compendium.xsd

http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd

http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd

">

<!--

ATLAS CrossLingual Information Retrieval

(c) 2012 University of Hamburg ; Dr. Ronald Winnemoeller

-->

<manifest>

Bundle-Version = 1.0

Bundle-Name = Nebula5 :: ATLAS CrossLingual Information Retrieval

Bundle-SymbolicName = nebula5-atlas

Bundle-Description = CrossLingual Information Retrieval for the ATLAS EU project

Bundle-Vendor = ronald.winnemoeller@uni-hamburg.de

</manifest>

<camelContext id="atlas" xmlns="http://camel.apache.org/schema/spring">

<endpoint id="rdfselect1"

uri="rdf://select?resultHeader=sparql&scriptURI=

file:${karaf.home}/data/atlas/select-all.sparql"/>

<endpoint id="rdfconstruct1"

uri="rdf://construct?resultHeader=sparql&scriptURI=

file:${karaf.home}/data/atlas/construct.sparql"/>

<endpoint id="storagePoller"

uri="file://${karaf.home}/ATLAS_STORAGE?include=.*.rdf|.*.xml"/>

<endpoint id="queryPoller"

uri="file://${karaf.home}/ATLAS_QUERIES?include=.*.rdf|.*.xml"/>

<endpoint id="resultSender"

uri="file://${karaf.home}/ATLAS_RESULTS??

fileName=result.rdf&fileExist=Override"/>

<route id="store-jms">

<from uri="jms:queue:atlas.store.request.Q" />

<setHeader headerName="rdfsearch_control">

page 33 / 39

DELIVERABLE 6.2

<constant>STORE</constant>

</setHeader>

<log message="STORE MESSAGE ID = ${in.header.rdfmessage_id} ."

loggingLevel="INFO" logName="cool"/>

<inOnly uri="rdfindex://atlas" />

</route>

<route id="query-jms">

<from uri="jms:queue:atlas.query.request.Q" />

<setHeader headerName="rdfsearch_control">

<constant>SEARCH</constant>

</setHeader>

<log message="SEARCH QUERY = ${in.header.rdfsearch_query}"

loggingLevel="INFO" logName="cool"/>

<inOut uri="rdfindex://atlas" />

</route>

<route id="query-route">

<from uri="ref:queryPoller" />

<log message="SEARCH QUERY = ${body}"

loggingLevel="INFO" logName="cool"/>

<setHeader headerName="rdfsearch_control">

<constant>SEARCH</constant>

</setHeader>

<setHeader headerName="rdfsearch_query">

<xpath resultType="java.lang.String">//search/@query</xpath>

</setHeader>

<setHeader headerName="rdfsearch_rows">

<xpath resultType="java.lang.String">//search/@rows</xpath>

</setHeader>

<log message="SEARCH QUERY = ${in.header.rdfsearch_query}"

loggingLevel="INFO" logName="cool"/>

<inOut uri="rdfindex://atlas" />

<inOut uri="ref:rdfconstruct1" />

<setHeader headerName="org.apache.servicemix.file.name">

<constant>result.rdf</constant>

</setHeader>

<inOnly uri="ref:resultSender" />

</route>

<route id="store-route">

<from uri="ref:storagePoller" />

<setHeader headerName="rdfsearch_control">

<constant>STORE</constant>

</setHeader>

<setHeader headerName="rdfmessage_id">

<xpath resultType="java.lang.String">/*/*/*[1]</xpath>

</setHeader>

<setHeader headerName="rdfmessage_owner">

<constant>{http://www.atlas-project.eu/data}admin</constant>

</setHeader>

<setHeader headerName="rdfmessage_content_type">

<constant>application/rdf+xml</constant>

</setHeader>

<setHeader headerName="rdfmessage_content_ref">

<xpath resultType="java.lang.String">/*/*/*[2]</xpath>

</setHeader>

page 34 / 39

DELIVERABLE 6.2

<log message="STORE MESSAGE ID = ${in.header.rdfmessage_id} ."

loggingLevel="INFO" logName="cool"/>

<inOnly uri="rdfindex://atlas" />

</route>

</camelContext>

<!-- Common Utilities -->

<bean

class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"/>

<bean id="connectionFactory"

class="org.apache.activemq.pool.PooledConnectionFactory">

<constructor-arg value="tcp://localhost:61666" />

<property name="maxConnections" value="8" />

</bean>

<bean class="org.apache.servicemix.common.osgi.EndpointExporter" />

</beans>

page 35 / 39

DELIVERABLE 6.2

ATLAS Test client
The following code implements a Junit test that can be used as starting point for developing
client modules:

package de.uhh.nebula5.atlas;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import javax.jms.DeliveryMode;

import javax.jms.Destination;

import javax.jms.Message;

import javax.jms.MessageConsumer;

import javax.jms.Queue;

import javax.jms.QueueConnection;

import javax.jms.QueueSender;

import javax.jms.QueueSession;

import javax.jms.Session;

import javax.jms.TextMessage;

import junit.framework.TestCase;

import org.apache.activemq.ActiveMQConnectionFactory;

import de.uhh.nebula5.Nebula5;

/**

*

* The Class JMSClientTest.

*/

public class JMSClientTest extends TestCase {

/** The Constant STORE_REQUESTQ. */

public static final String STORE_REQUESTQ = "atlas.store.request.Q";

/** The Constant STORE_RESPONSEQ. */

public static final String STORE_RESPONSEQ = "atlas.store.response.Q";

/** The Constant QUERY_REQUESTQ. */

public static final String QUERY_REQUESTQ = "atlas.query.request.Q";

/** The Constant QUERY_RESPONSEQ. */

public static final String QUERY_RESPONSEQ = "atlas.query.response.Q";

/** The Constant OWNER. */

public static final String OWNER = "@owner";

/** The Constant ID. */

public static final String ID = "@id";

/**

* Test jms test.

*

* @throws Exception

* the exception

*/

public void testStoreMessage() throws Exception {

page 36 / 39

DELIVERABLE 6.2

/* Set up JMS environment */

ActiveMQConnectionFactory connectionFactory = new ActiveMQConnectionFactory(

"tcp://localhost:61666");

QueueConnection queueConnection = connectionFactory

.createQueueConnection();

QueueSession queueSession = queueConnection.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);

Queue requestQueue = queueSession

.createQueue(JMSClientTest.STORE_REQUESTQ);

QueueSender queueSender = queueSession.createSender(requestQueue);

Destination tempResponseQueue = queueSession

.createQueue(JMSClientTest.STORE_RESPONSEQ);

/* Set up JMS requestMessage */

TextMessage msg = queueSession.createTextMessage();

msg.setStringProperty(JMSClientTest.ID, "34764376784884");

msg.setStringProperty(JMSClientTest.OWNER,

"{http://atlas.eu/user}admin");

msg.setStringProperty(Nebula5.RDFMESSAGE_ID, "34764376784884");

msg.setStringProperty(Nebula5.RDFMESSAGE_OWNER,

"{http://www.atlas-project.eu/data}admin");

msg.setStringProperty(Nebula5.RDFMESSAGE_CONTENTTYPE,

"application/rdf+xml");

msg.setStringProperty(Nebula5.RDFMESSAGE_CONTENTREF,

"file://sample.rdf");

BufferedReader in = new BufferedReader(new InputStreamReader(this

.getClass().getClassLoader()

.getResourceAsStream("sample-doc.rdf")));

StringBuffer sbuf = new StringBuffer();

String line = null;

while ((line = in.readLine()) != null) {

sbuf.append(line + "\n");

}

in.close();

String rdftext = sbuf.toString();

msg.setText(rdftext);

msg.setJMSReplyTo(tempResponseQueue);

msg.setJMSCorrelationID(String.valueOf(System.currentTimeMillis()));

/* Print some stuff about the request */

System.out.println("#######################################");

System.out.println("#");

System.out.println("# About to send msg.getText(): " + msg.getText());

System.out.println("# msg.getJMSReplyTo(): " + msg.getJMSReplyTo());

System.out.println("# msg.getJMSCorrelationID(): "

+ msg.getJMSCorrelationID());

System.out.println("#");

System.out.println("#######################################");

/* Start connection, send the message and thats it folks */

queueConnection.start();

queueSender.send(msg, DeliveryMode.NON_PERSISTENT, 1, 2000);

// Clean up after ourselves

queueSender.close();

queueSession.close();

queueConnection.close();

page 37 / 39

DELIVERABLE 6.2

}

/**

* Test jms test.

*

* @throws Exception

* the exception

*/

public void testQueryMessage() throws Exception {

/* Set up JMS environment */

ActiveMQConnectionFactory connectionFactory = new ActiveMQConnectionFactory(

"tcp://localhost:61666");

QueueConnection queueConnection = connectionFactory

.createQueueConnection();

QueueSession queueSession = queueConnection.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);

Queue requestQueue = queueSession

.createQueue(JMSClientTest.QUERY_REQUESTQ);

QueueSender queueSender = queueSession.createSender(requestQueue);

Destination tempResponseQueue = queueSession

.createQueue(JMSClientTest.QUERY_RESPONSEQ);

MessageConsumer responseMessageConsumer = queueSession

.createConsumer(tempResponseQueue);

/* Set up JMS requestMessage */

TextMessage msg = queueSession.createTextMessage();

msg.setStringProperty(JMSClientTest.ID, "34764376784884");

msg.setStringProperty(JMSClientTest.OWNER,

"{http://atlas.eu/user}admin");

msg.setStringProperty(Nebula5.RDFSEARCH_CONTROL,

Nebula5.RDFSEARCH_CONTROL_SEARCH);

msg.setStringProperty(Nebula5.RDFSEARCH_QUERY, "@content:Business");

msg.setStringProperty(Nebula5.RDFSEARCH_ROWS, Nebula5.RDFSEARCH_ROWS_DEFAULT);

msg.setText("<search query=\"@content:Business\" rows=\"20\" />");

msg.setJMSReplyTo(tempResponseQueue);

msg.setJMSCorrelationID(String.valueOf(System.currentTimeMillis()));

/* Print some stuff about the request */

System.out.println("#######################################");

System.out.println("#");

System.out.println("# About to send msg.getText(): " + msg.getText());

System.out.println("# msg.getJMSReplyTo(): " + msg.getJMSReplyTo());

System.out.println("# msg.getJMSCorrelationID(): "

+ msg.getJMSCorrelationID());

System.out.println("#");

System.out.println("#######################################");

/* Start connection, send the message and thats it folks */

queueConnection.start();

queueSender.send(msg, DeliveryMode.NON_PERSISTENT, 1, 2000);

Message responseMessage = responseMessageConsumer.receive();

/* Print some stuff about the response */

System.out.println("#######################################");

System.out.println("#");

System.out.println("# responseMessage.getClass(): "

+ responseMessage.getClass());

page 38 / 39

DELIVERABLE 6.2

System.out.println("# responseMessage.getJMSDestination(): "

+ responseMessage.getJMSDestination());

System.out.println("# responseMessage.getJMSCorrelationID(): "

+ responseMessage.getJMSCorrelationID());

/* Get the TextMessage from the response and print it out */

TextMessage textMessage = (TextMessage) responseMessage;

System.out.println("# textMessage.getText(): " +

textMessage.getText());

// System.out.println("# Message: " + responseMessage.toString());

System.out.println("# JBI Done: "

+ responseMessage.getStringProperty("JBIDone"));

System.out.println("#");

System.out.println("#######################################");

// Clean up after ourselves

queueSender.close();

queueSession.close();

queueConnection.close();

}

}

page 39 / 39

