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Overview
The document classification is a task which assigns a document to one or more categories 
or classes in a taxonomy. As the automation of this process is  of great importance for 
modern applications, a variety of methods have been developed during the last several 
years.

The methods for automatic classification can be split into two groups – statistical algorithms 
and structural algorithms. Examples for statistical algorithms are Regression and Naïve 
Bayes. The structural algorithms can be further divided into Rule Based (Decision Trees, 
Production rules), Distance Based (kNN, Centroid) and Neural Networks (Marmanis, 
Babenko, 2009).

Single-label classification is concerned with learning from a set of documents, which are 
associated with a single label (class) - I from a set of labels -  L. In multi-label classification 
each document can be associated with more than one label from L. If L contains exactly two 
labels, the learning problem is called binary classification, and if L contains more than two 
labels, the problem is called multi-class classification (Tsoumakas, Katakis, 2007).

The automatic categorization tool (ACT), developed in the scope of the ATLAS project, 
focuses on the multi-label multi-class automatic categorization task. Furthermore, a 
convenient graphical user interface for building and evaluating categorization models has 
been provided as part of the integration between the ACT and the content management 
system component in ATLAS, namely i-Publisher.

This document is organized as follows:
● the “Automatic categorization tool” chapter focuses on the requirement, software 

architecture and implemented features of the ACT;
● the “Algorithms” chapter enlists the categorization algorithms which have been 

integrated in the ACT. The API for integrating new algorithms is well documented;
● the “Testing” chapter describes the testing and evaluation infrastructure, regression 

tests strategy and the ACT performance on the Reuters-215781 corpus and  the 
EUDocLib2 set of documents;

● the final chapter provides ideas for extending the ACT with additional categorization 
algorithms and better exploitation of the ACT results in the WP5 (“Text 
summarization”) and WP6 (“Machine translation”) related tasks.

● “Appendix A” describes the integration of the ACT in the i-Publisher ATLAS 
component.

Automatic Categorization Tool
This chapter describes the requirements for the ACT and the architecture of the 
categorization tool and depicts the integration patterns in i-Publisher. Finally, we present a 
short walkthrough through the i-Publisher user interface with respect to the categorization 

1 http://about.reuters.com/researchandstandards/corpus/
2 EUDocLib (http://eudoclib.atlasproject.eu/) is a proof-of-concept web site developed entirely with i-
Publisher. The website contains more than 140’000 EURLex (http://eur-lex.europa.eu/) documents, 
categorized within 3 subsets of EuroVOC (http://eurovoc.europa.eu/) thesaurus.
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functionalities in ATLAS.

Requirements

Environment and user requirements

The ATLAS automatic categorization tool is used in a multilingual and multi-domain 
environment. Furthermore, the volume of the categories varies - from less than 100 in i-
Librarian3 and Reuters-21578 to more than 5’000 in EUDocLib. The volume of the training 
and test data also varies - from less than 10 documents per category in i-Librarian and an 
average of 100 training instances in Reuters-21578, to more than 20’000 training documents 
per category in EUDocLib.

Software requirements
The following software requirements have been derived from the above-mentioned user 
requirements and environmental settings. The ACT tools should:

● be language independent, in order to address the multilingual aspects of the data;
● be domain independent, so that they can be used for building categorization models 

for various domains with variable categorization label sets;
● provide means of choosing optimal categorization model settings, in order to address 

the variable sizes of training corpora and categorization labels sets;

Furthermore, the ACT should be integrated within i-Publisher in order to enable the users 
to manage the categorization label sets, training data and models, as well as to suggest the 
most appropriate labels for one or more documents to the user.

Finally, the ACT should support the i-Publisher users to organize their content even if there 
is minimal or no training data.

ACT features
The ACT features message-based network-distributed communication; various feature 
types for the categorization feature space; various feature space reduction techniques; an 
extensible classifier (algorithm) infrastructure; three available classifiers and one clustering 
algorithm; model builder; model applier and results assembler. All these features and 
components are described in the following subchapters. Additionally, ACT is integrated in 
ATLAS in the backend and GUI layers.

Asynchronous communication
The automatic categorization tasks (training and predicting) usually require substantial 
hardware resources, therefore the classical request-response pattern cannot be applied. We 
adopted a network-distributed architecture, based on an asynchronous message processing 
framework (ActiveMQ or RabbitaMQ4). All requests for model building, label predictions 
and document clustering are firstly sent to input queues. Software components, designed 

3 i-Librarian (www.i-librarian.eu) is a website implemented completely with i-Publisher. Being a 
digital library, a categorization tool is of a great benefit for organizing the content. The categorization 
functionalities in i-Librarian feature the supervised and unsupervised machine learning algorithms.
4 ApacheMQ - http://activemq.apache.org ; RabbitMQ - http://www.rabbitmq.com/
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to handle one specific type of messages check out a message from an input queue and 
process the message. The result is sent to an output queue once the processing of the 
task is over. Then i-Publisher collects the result from the output queue and stores it in a 
database. The diagram below depicts this workflow.

This top-level architecture has an important advantage - horizontal scalability can be easily 
achieved by adding another ACT engine which connects to the same input and output 
queues.

Features types
We use the output of the language processing chains, developed in WP45 (Language 
Processing Chains), in order to address the multilingual aspect of the processed data. Each 
entity (sentence, token, noun phrase and named entity) is represented by its unique identifier 
(ID). In this way, each document is presented as a sequence of natural numbers and in this 
way the input to the ACT becomes language independent. Another benefit of presenting the 
documents as a sequence of numerical features is that we can use high performance and 
low-memory footprint JAVA collections.

The categorization feature space can be based on the following types of features:
● token - each token is identified by its lemma, PoS and word sense;
● lemma - the same as token but the PoS and word sense information is not used;
● noun phrase - the document is presented as a sequence of its noun phrases only;
● head nouns - the document is represented as a sequence of the head nouns of the 

noun phrases in this document;

Currently, a mixed type feature space is not supported by the ATLAS categorization tool.

Feature space reduction
As the dimension of the feature space can be huge, we provide several feature space 
reduction techniques (FSRT). It is possible to chain several FSRT, e.g. firstly the feature 
space is reduced by the first FSRT in the chain, then by the second, and so on. The 

5 WP4 (Language Processing Chains) has ended in month 21 (December 2011). The results from 
this work package are harmonized chains of heterogeneous NLP tools which provide tokenization, 
sentence splitting, POS tagging, lemmatization, noun phrase chunking and named entities recognition 
in Bulgarian, English, German, Greek, Polish and Romanian. Detailed description of the NLP tools, 
the integrated chains, quality and performance of the LPCs can be found in deliverable D4.1.
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currently supported FSRT are:

● top_N - this technique assigns weight to each feature in the space and retains only 
the best N features. N could be a number, e.g. 5000, or a percentage, e.g. 5%, of the 
feature space;

● prune - this technique selects only features that are common for more 
than “prune_below” and less than “prune_above” documents;

● chi2 - this technique implements the χ2 distribution6 with one degree of freedom to 
test how important one feature is for a given category/label. For example, chi2_100 
selects the 100 best (according to the χ2 score) for each category in the model.

Classifiers
Once the feature space is defined and optionally reduced, each classifier (classification 
algorithm) builds a normalized weighted structure for each category. This structure is either 
represented as a vector in the feature space (for centroid classifier) or as a probability 
distribution (for naive bayesian and entropy classifiers). The categorization model is actually 
a serialized version of the set of all weighted structures.

Building a model

Firstly, the i-Publisher user decides on the model feature type and dimension reduction 
techniques. Secondly, the i-Publisher backend sends  the request for building a specific 
model to an input queue.

The ACT then checks out the message and builds a model for each of the available/
configured classifiers (algorithms). This process fetches the training data, builds the feature 
space, reduces it, forms the vectors for each category and normalizes them. The set of 
vectors is then serialized and sent to an output queue.

Finally, i-Publisher fetches the built model from the output queue, saves it in the database 
and marks the model as “ready-to-be-used”.

The schema below outlines the main steps in the building of a categorization model. It is 
important to note that each classifier uses its own model.

6 http://en.wikipedia.org/wiki/Chi-squared_distribution
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Using a model
The process of using a model consists of the following steps:

1. the user (i-Publisher, i-Librarian, or anonymous from another ATLAS component) 
triggers and action for predicting the categories of one or more content items;

2. according to the configuration of the initiating component, the categorization action 
is either immediately sent for execution or queued. The second option is useful 
when a batch of content items are being categorized. The optimal batch size was 
experimentally set to 128 content items;

3. for each classifier
a. each document is presented with its features (matching the feature type of the 

model);
b. a normalized weighted structure (vector or probability distribution) is created 

for each document;
c. each structure is “matched” against each category in the model and a 

category score is calculated. The score is either a distance or a probability;
d. the result contains the score for each category for each document in the 

batch.
4. the results from all classifiers are assembled and the top-N categories for each 

document in the batch are sent to an output queue;
5. i-Publisher then connects the messages from that output queue and stores the 

results in the database.

The diagram below depicts the process of predicting categories for one document or a batch 

page 8 / 20



 

DELIVERABLE 3.1

 

of documents.

Algorithms
The categorization algorithms described here are available in the ACT. Individual evaluation 
for each of the algorithms has been performed on the Reuters-21578 corpus. The results of 
the evaluations can be found in the “Performance results” subchapter.

CFC and CFC-modif
The Class-Feature-Centroid (CFC) and its modified version (CFC-modif) classifiers are 
based on the work by Hu Guan, Jingyu Zhou and Minyi Guo from the Shanghai Jiao Tong 
University.

The Centroid-based approaches feature short training time and testing time due to their 
computational efficiency. However, the accuracy of centroid-based classifiers is inferior to 
SVM, mainly because the centroids found during construction are far from perfect locations.

The Class-Feature-Centroid (CFC) classifier for multi-class, single-label text categorization is 
built from two important class distributions: inter-class term index and inner-class term index. 
CFC defines a novel combination of these indices and employs a denormalized cosine 
measure to calculate the similarity score between a text vector and a centroid. Experiments 
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on the Reuters-21578 corpus show that CFC consistently outperforms the state-of-the-art 
SVM classifiers on both micro-F1 and macro-F1 scores. CFC is more effective and robust 
than SVM particularly when data is sparse.

Relative entropy
This classifier, based on the Kullback–Leibler divergence7 (also information divergence, 
information gain, relative entropy, or KLIC), is a non-symmetric measure of the difference 
between two probability distributions - P and Q. KL measures the expected number of extra 
bits required to code samples from P when using a code based on Q, rather than using a 
code based on P. Typically, P represents the "true" distribution of data, observations, or a 
precisely calculated theoretical distribution. The measure Q typically represents a theory, 
model, description or an  approximation of P.

The text categorization is performed using the Kullback-Leibler distance between the 
probability distribution of the document and the probability distribution of each category. 
Using the same representation of categories, experiments show a significant improvement 
when the above mentioned method is used. The KLD method achieves substantial 
improvements over the tfidf8 performing method.

Naive Bayesian
In simple terms, a naive Bayes classifier9 assumes that the presence (or absence) of a 
particular feature of a class is unrelated to the presence (or absence) of any other feature, 
given the class variable. For example, a fruit may be considered to be an apple if it is red, 
round, and about 4" in diameter. Even if these features depend on each other or upon the 
existence of the other features, a naive Bayes classifier considers all of these properties to 
independently contribute to the probability of  this fruit being an apple.

Despite their naive design and apparently over-simplified assumptions, naive Bayes 
classifiers have worked quite well in many complex real-world situations. In 2004, analysis 
of the Bayesian classification problem has shown that there are some theoretical reasons 
for the apparently unreasonable efficacy of naive Bayes classifiers. An advantage of the 
naive Bayes classifier is that it only requires a small amount of training data to estimate the 
parameters (means and variances of the variables) necessary for classification. Because 
independent variables are assumed, only the variances of the variables for each class need 
to be determined and not the entire covariance matrix. Our experiments showed that using 
Naive Bayesian classifier in a combination with Laplace smoothing10 significantly improves 
the quality of the classifier.

LDA (experimental)

7 http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
8 http://en.wikipedia.org/wiki/Tf*idf
9 http://en.wikipedia.org/wiki/Naive_Bayes_classifier
10 http://en.wikipedia.org/wiki/Laplace_smoothing
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LDA is an experimental algorithm, which uses generative model11 for dimension reduction 
and applies machine learning techniques to obtain the appropriate categories. The 
experimental algorithm used for space reduction is based on the Latent Dirichlet Allocation 
(LDA) model developed by David Blei. In the this approach we treat LDA as an algorithm 
which reduces the number of features representing a document down to the K ’most 
meaningful’. LDA represents each document as the vector of those features (all features 
values sum to one, most significant one has the highest value). Suppose we have assigned 
those LDA features to the text. Such an assignment is a vector in RK, where K is the 
number of features. In this case we face a typical problem of mapping K LDA features to N 
categories. You can consider this task the problem of the machine learning and use such 
methods as support
vector machine, k nearest neighbors, etc.

Bisecting K-Means clustering
K-means (MacQueen, 1967) is one of the simplest unsupervised learning algorithms that 
solve the well known clustering problem. The main idea is to define k centroids, one for 
each cluster. These centroids should be placed in a smart way because a different location 
causes a different result. According to the literature, bisecting k-means clustering has better 
performance than the standard k-means algorithm and comparable quality to the hierarchical 
clustering.

Currently, the ACT implements the bisecting k-means for clustering and in-house topic 
modelling technique. LDA topic modelling will be also available in the ACT by the end of the 
project.

Adding a new classifier
The ACT implementation is OSGi12-based and adding a new classifier actually 
means that a new service, implementing the ISpecificAutomaticCategorizationService  
(com.tetracom.atlas.textmining.categorization.api.service.ISpecificAutomaticCategorizationS
ervice) interface should be made available in the ACT OSGi container.

TheISpecificAutomaticCategorizationService interface has two self-explanatory methods 
buildModel and useModel:

11 Generative model for a document is based on the assumption, that documents can be created 
by sampling from hidden random variables, which describe theirs structure. Generative model is a 
concept drawn from statistical models and so topics models are examples implementing broader 
class of formalisms used to describe the different phenomena (e.g. modeling of the DNA, proteins, 
evolution of the population).
12 http://www.osgi.org/Main/HomePage
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Sample implementation of the classifier service can be found in the following plugins:
● com.tetracom.atlas.textmining.categorization.algorithms;
● com.tetracom.atlas.textmining.categorization.mallet.lda;
● com.tetracom.atlas.textmining.categorization.mulan;
● com.tetracom.atlas.textmining.categorization.unizd.

Testing
Series of evaluation and regression tests have been performed in order to ensure the stable 
consistent high-quality work of the automatic categorization tool in ATLAS. This chapter 
describes the testing environment and corpuses, provides an overview of the performance 
and quality results and finally elaborates on regularly executed regression test scenarios.

Training/Testing corpora
The ATLAS ACT is theoretically language independent and it should not matter what 
training/test corpus will be used for the evaluation of the tool. Furthermore, there are no 
freely-available corpora, annotated for the text categorization task. Therefotre we focus the 
initial evaluation of the ACT on the Reuters-21578 corpus.

Reuters-21578 collection Apte' includes 12,902 documents for 90 classes, with a fixed 
splitting between test and training data (3,299 vs. 9,603). The categories are presented as 
different directories. The set of files (one for each document,) associated with the target 
category, are stored in each directory. The non-labeled documents from the Reuters 
corpus are stored in the directory “unknown”. The document file names are increasing non-
repeating numbers for fast document indexing. Two different main directories (test and 
training) store the training/testing data.

The corpus was firstly imported in ATLAS in the form of content items from two content types 
- ReutersTrainingItem (7768) and ReutersTestItem (3019 items). The items in the “unknown” 
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category were excluded from the experiments. Secondly, the imported content items were 
processed by the English LPC and various categorization models were built.

The evaluation procedure compares the manually categorized test items to the automatically 
suggested categories (folders). The precision, recall and f1-measure are provided for each 
category in the model. The evaluation is completed with the micro and macro f1-measures 
for the whole model.

Performance results
The conducted experiments aim:

● to ensure that the implementation and integration of different classifiers is properly 
done and the quality of each individual classifier is inline with the state-of-the-art 
results;

● to completely exploit the semantic annotations made available from WP4 (Language 
Processing Chain) and to study the influence of the feature type on the classifier 
quality.

A table with detailed information on each of the experiments can be found at 
https://docs.google.com/spreadsheet/ccc?
key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E.

The following conclusions can be made based on the presented results:
● all implemented classifiers perform properly and their quality is comparable with the 

state-of-the-art achievements on the Reuters-21578 corpus;
● naive-bayesian classifier is more suitable when the number of features is small (less 

than 1000); the relative entropy and cfc-modif provide better results with the feature 
space is bigger (more than 4000 features);

● as expected, reducing the feature space decreases the overall quality of the model 
but the deviation is acceptable, especially when the feature space is reduced 5 or 10 
times;
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● all models based on head nouns perform worse than token-based models. The 

quality of the head nouns models is not significantly worse than the quality of 
the token-based models; thus head nouns models could be an option for ATLAS 
installations on modest hardware;

● the quality of models using the chi-2 feature reduction technique is comparable (or 
slightly better) than the tf.idf top_N feature reduction. However, the complexity of the 
chi-2 test is O(n2). One should use the chi-2 reduction having in mind that the models 
are (re)built rarely;

Regression tests
The quality of the results of the categorization engine strongly depends on the quality of the 
training and test data. In order to assess the quality of the categorization algorithms, the 
tests are performed on the well-known and scientifically recognized Reuters-21578 corpus. 
We record a precision, recall and f1-measure for all 90 categories, as well as the micro- 
and macro- f1-measure for the whole data set and use them as a template to be compared 
with the results provided by the newly built model. A test fails if the difference between 
the recorded and the newly calculated f1-measure is greater than a predefined constant 
(threshold).

We test the multilingual aspects of the automatic categorization for each of the 80 top-level 
categories used in i-Librarian. The automatic test builds the categorization models for each 
language and checks their validity by categorizing the training documents. This test fails if 
the f1-measure is not in a predefined interval  for each category. The upper threshold for this 
predefined interval is set to 0.93 in order to avoid model overfitting.
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Conclusion
Automated text categorization is an important technique for many web applications, such 
as document indexing, document filtering and cataloging web resources. Many different 
approaches have been proposed for the automated text categorization problem. Despite 
the great demand for such functionalities integrated in the modern CMS, there are no robust 
production- and integration- ready solutions.

The ATLAS automatic text categorization features message-based network distributed 
communication; various feature types for the categorization feature space; various feature 
space reduction techniques; extensible classifier (algorithm) infrastructure; three available 
classifiers and one clustering algorithm; model builder; model applier and results assembler. 
Finally, ACT is seamlessly integrated in ATLAS in the backend and GUI layers.

References
Ferrucci, A. Lally, 2004, UIMA: an architectural approach to unstructured information 
processing in the corporate research environment. Natural Language Engineering 10, No. 3-
4, 327-348

G. Tsoumakas, I. Katakis, 2007, Multi-Label Classification: An Overview, International 
Journal of Data Warehousing and Mining, 3(3):1-13.

Marmanis, Babenko, 2009: Algorithms of the Intelligent Web. Manning, 2009.

Hu Guan , Jingyu Zhou , Minyi Guo, 2009, A class-feature-centroid classifier for text 
categorisation, Proceedings of the 18th international conference on World wide web, Madrid, 
Spain, April 20-24, 2009 [doi: 10.1145/1526709.1526737]

Qian, H. "Relative Entropy: Free Energy Associated with Equilibrium Fluctuations and 
Nonequilibrium Deviations." 8 Jul 2000. http://arxiv.org/abs/math-ph/0007010.

Bigi, Brigitte, 2003, Using Kullback-Leibler Distance for Text Categorization, Advances 
in Information Retrieval, Lecture Notes in Computer Science vol. 2633. Springer Berlin / 
Heidelberg.

Peter Harrington (2012). Machine Learning in Action. Manning Publications Co.

 

page 15 / 20

http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010


 

DELIVERABLE 3.1

 

Appendix A: i-Publisher user interface
i-Publisher is the front-most ATLAS component providing the GUI (graphical user interface) 
between the ATLAS users and the lower functional layers of the system. This chapter 
describes how the ACT is integrated in i-Publisher and which are the key functionalities, 
related to the test categorization in ATLAS content management system.

Taxonomy editor
As a modern CMS, ATLAS provides means for creating and further managing one or more 
taxonomies or flat list  of keywords: the categorization labels are hierarchically organized; flat 
keywords lists are treated in the same way as the tree-like keywords; there is no limitations 
for the number of taxonomies, depth of their hierarchy or the number of keywords in each 
structure.

The categorization structures are common for all web sites in a given domain and are 
managed from the “Domain” editor. The user is provided with drag-and-drop UI for managing 
the hierarchy of keywords and with a simple translation dialog to translate the keywords in 
the multilingual domains. The screenshots below show the taxonomy editor.

“Domain” editor » “Categorization” shortcut » List of available taxonomies
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“Taxonomy” editor - toolbar buttons provide means to create new and reorder existing 
keywords; F2 renames/translates the selected keyword; use drag-and-drop to manage the 

hierarchy between the keywords.

At this stage, the taxonomies can be used for manually categorized content items to form 
keywords-based navigation widgets.

Manual categorization of a content item
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Definition of navigation widget based on categorization taxonomy

Training a model
Very few content management systems provide a simple user interface for building custom 
models for automatic text categorization. Most of the automatic categorization functionalities, 
integrated in the other CMS, use external services, such as AlchemyAPI13 or OpenCalais14. 
ATLAS project does not replicate the already available services but provides the  ATLAS 
ACT that can be easily tuned via  simple GUI, to each individual client or entity. Using 
the ATLAS ACT tool, a user can easily build models for automatic text categorization, for 
example, for the domain of biomechanics, black holes or cookery.

The process of building such a tool includes:
1. an existing taxonomy, built  with the “Taxonomy editor”;
2. a training/ testing content items. The training content items are first processed by the 

appropriate LPC and then the results are used to train a model;
3. customization/fine-tuning of the model. Here the user can decide on model-specific 

parameters, such as feature types, feature space reduction techniques, filtering on 
the initial set of categories (e.g. omit categories with less than 5 training content 
items).

The following screenshot shows how a model is firstly configured and then built.

13 http://www.alchemyapi.com/
14 http://www.opencalais.com/
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“Taxonomy” editor » “Automatic categorization” shortcut » Selecting the set of training items

“Taxonomy” editor » “Automatic categorization” shortcut » Overview of the training content

“Taxonomy” editor » “Automatic categorization” shortcut » Setting the model parameters

A separate model is built for every available classifier (algorithm) for each of the available 
languages. The automatic categorization functionality becomes available when the first 
model for a language is built. The categories production process is triggered by saving a 
content item or manually, through the i-Publisher GUI. The latest option is available for a 
single content item or a list of content items.

Categorization widget
The results of the automatic categorization are visible in i-Publisher, in the “Categorization” 
tab of the “Content item” editor. Furthermore, these result can be visualized in a website 
using a “Categorization” widget. This widget is created for each content item.
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Clustering widget
The “Clustering” widget shows the results of the document clustering features of the ACT. 

Backend evaluation tool
If the user/organization can provide a set of testing item,s the ACT can conduct a formal 
evaluation of the built models. The backend evaluation tool downloads the test content, 
processes it through the appropriate LPCs and runs the automatic categorization using 
the model and the processed data. Then the manual categorization is compared with 
the automatically suggested. The precision, recall and f1-measure are provided for each 
category in the model. The evaluation finishes with the micro and macro f1-measures for the 
whole model.
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