

DELIVERABLE 3.1

Deliverable 3.1
Categorization Tool

Grant Agreement number: 250467

Project acronym: ATLAS

Project type: Pilot B

 Deliverable D 4.1 Categorization Tool 19.05.2012

Project coordinator name, title and organisation:

Anelia Belogay, CEO; Diman Karagiozov, CTO
Tetracom Interactive Solutions
Tel: +35924950444
Fax: +35924950443
E-mail:anelia@tetracom.com, diman@tetracom.com
Project website address: www.atlasproject.eu

Authors:

Anelia Belogay, Diman Karagiozov, Radostin Surilov (Tetracom)
Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination level: PUBLIC

page 1 / 20

mailto:diman@tetracom.com
mailto:diman@tetracom.com
mailto:diman@tetracom.com
mailto:diman@tetracom.com
mailto:diman@tetracom.com
http://www.atlasproject.eu
http://www.atlasproject.eu
http://www.atlasproject.eu
http://www.atlasproject.eu
http://www.atlasproject.eu
http://www.atlasproject.eu

DELIVERABLE 3.1

Document history
Revision Date Author Description

0.1 5 May 2012 Diman Karagiozov initial version, table of contents

0.2 19 May 2012 Radostin Surilov algorithms, references

0.3 03 June 2012 Diman Karagiozov i-Publisher integration and
categorization UI

0.7 28 June 2012 Diman Karagiozov Tests

1.0 30 June 2012 Anelia Belogay Final version

Statement of originality
This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others has
been made through appropriate citation, quotation or both.

page 2 / 20

DELIVERABLE 3.1

Table of contents

Document history
Statement of originality
Overview
Automatic Categorization Tool

Requirements
Environment and user requirements
Software requirements

ACT features
Asynchronous communication
Features types
Feature space reduction
Classifiers
Building a model
Using a model

Algorithms
CFC and CFC-modif
Relative entropy
Naive Bayesian
LDA (experimental)
Bisecting K-Means clustering
Adding a new classifier

Testing
Training/Testing corpora
Performance results
Regression tests

Conclusion
References
Appendix A: i-Publisher user interface

Taxonomy editor
Training a model
Categorization widget
Clustering widget
Backend evaluation tool

page 3 / 20

DELIVERABLE 3.1

Overview
The document classification is a task which assigns a document to one or more categories
or classes in a taxonomy. As the automation of this process is of great importance for
modern applications, a variety of methods have been developed during the last several
years.

The methods for automatic classification can be split into two groups – statistical algorithms
and structural algorithms. Examples for statistical algorithms are Regression and Naïve
Bayes. The structural algorithms can be further divided into Rule Based (Decision Trees,
Production rules), Distance Based (kNN, Centroid) and Neural Networks (Marmanis,
Babenko, 2009).

Single-label classification is concerned with learning from a set of documents, which are
associated with a single label (class) - I from a set of labels - L. In multi-label classification
each document can be associated with more than one label from L. If L contains exactly two
labels, the learning problem is called binary classification, and if L contains more than two
labels, the problem is called multi-class classification (Tsoumakas, Katakis, 2007).

The automatic categorization tool (ACT), developed in the scope of the ATLAS project,
focuses on the multi-label multi-class automatic categorization task. Furthermore, a
convenient graphical user interface for building and evaluating categorization models has
been provided as part of the integration between the ACT and the content management
system component in ATLAS, namely i-Publisher.

This document is organized as follows:
● the “Automatic categorization tool” chapter focuses on the requirement, software

architecture and implemented features of the ACT;
● the “Algorithms” chapter enlists the categorization algorithms which have been

integrated in the ACT. The API for integrating new algorithms is well documented;
● the “Testing” chapter describes the testing and evaluation infrastructure, regression

tests strategy and the ACT performance on the Reuters-215781 corpus and the
EUDocLib2 set of documents;

● the final chapter provides ideas for extending the ACT with additional categorization
algorithms and better exploitation of the ACT results in the WP5 (“Text
summarization”) and WP6 (“Machine translation”) related tasks.

● “Appendix A” describes the integration of the ACT in the i-Publisher ATLAS
component.

Automatic Categorization Tool
This chapter describes the requirements for the ACT and the architecture of the
categorization tool and depicts the integration patterns in i-Publisher. Finally, we present a
short walkthrough through the i-Publisher user interface with respect to the categorization

1 http://about.reuters.com/researchandstandards/corpus/
2 EUDocLib (http://eudoclib.atlasproject.eu/) is a proof-of-concept web site developed entirely with i-
Publisher. The website contains more than 140’000 EURLex (http://eur-lex.europa.eu/) documents,
categorized within 3 subsets of EuroVOC (http://eurovoc.europa.eu/) thesaurus.

page 4 / 20

DELIVERABLE 3.1

functionalities in ATLAS.

Requirements

Environment and user requirements

The ATLAS automatic categorization tool is used in a multilingual and multi-domain
environment. Furthermore, the volume of the categories varies - from less than 100 in i-
Librarian3 and Reuters-21578 to more than 5’000 in EUDocLib. The volume of the training
and test data also varies - from less than 10 documents per category in i-Librarian and an
average of 100 training instances in Reuters-21578, to more than 20’000 training documents
per category in EUDocLib.

Software requirements
The following software requirements have been derived from the above-mentioned user
requirements and environmental settings. The ACT tools should:

● be language independent, in order to address the multilingual aspects of the data;
● be domain independent, so that they can be used for building categorization models

for various domains with variable categorization label sets;
● provide means of choosing optimal categorization model settings, in order to address

the variable sizes of training corpora and categorization labels sets;

Furthermore, the ACT should be integrated within i-Publisher in order to enable the users
to manage the categorization label sets, training data and models, as well as to suggest the
most appropriate labels for one or more documents to the user.

Finally, the ACT should support the i-Publisher users to organize their content even if there
is minimal or no training data.

ACT features
The ACT features message-based network-distributed communication; various feature
types for the categorization feature space; various feature space reduction techniques; an
extensible classifier (algorithm) infrastructure; three available classifiers and one clustering
algorithm; model builder; model applier and results assembler. All these features and
components are described in the following subchapters. Additionally, ACT is integrated in
ATLAS in the backend and GUI layers.

Asynchronous communication
The automatic categorization tasks (training and predicting) usually require substantial
hardware resources, therefore the classical request-response pattern cannot be applied. We
adopted a network-distributed architecture, based on an asynchronous message processing
framework (ActiveMQ or RabbitaMQ4). All requests for model building, label predictions
and document clustering are firstly sent to input queues. Software components, designed

3 i-Librarian (www.i-librarian.eu) is a website implemented completely with i-Publisher. Being a
digital library, a categorization tool is of a great benefit for organizing the content. The categorization
functionalities in i-Librarian feature the supervised and unsupervised machine learning algorithms.
4 ApacheMQ - http://activemq.apache.org ; RabbitMQ - http://www.rabbitmq.com/

page 5 / 20

DELIVERABLE 3.1

to handle one specific type of messages check out a message from an input queue and
process the message. The result is sent to an output queue once the processing of the
task is over. Then i-Publisher collects the result from the output queue and stores it in a
database. The diagram below depicts this workflow.

This top-level architecture has an important advantage - horizontal scalability can be easily
achieved by adding another ACT engine which connects to the same input and output
queues.

Features types
We use the output of the language processing chains, developed in WP45 (Language
Processing Chains), in order to address the multilingual aspect of the processed data. Each
entity (sentence, token, noun phrase and named entity) is represented by its unique identifier
(ID). In this way, each document is presented as a sequence of natural numbers and in this
way the input to the ACT becomes language independent. Another benefit of presenting the
documents as a sequence of numerical features is that we can use high performance and
low-memory footprint JAVA collections.

The categorization feature space can be based on the following types of features:
● token - each token is identified by its lemma, PoS and word sense;
● lemma - the same as token but the PoS and word sense information is not used;
● noun phrase - the document is presented as a sequence of its noun phrases only;
● head nouns - the document is represented as a sequence of the head nouns of the

noun phrases in this document;

Currently, a mixed type feature space is not supported by the ATLAS categorization tool.

Feature space reduction
As the dimension of the feature space can be huge, we provide several feature space
reduction techniques (FSRT). It is possible to chain several FSRT, e.g. firstly the feature
space is reduced by the first FSRT in the chain, then by the second, and so on. The

5 WP4 (Language Processing Chains) has ended in month 21 (December 2011). The results from
this work package are harmonized chains of heterogeneous NLP tools which provide tokenization,
sentence splitting, POS tagging, lemmatization, noun phrase chunking and named entities recognition
in Bulgarian, English, German, Greek, Polish and Romanian. Detailed description of the NLP tools,
the integrated chains, quality and performance of the LPCs can be found in deliverable D4.1.

page 6 / 20

DELIVERABLE 3.1

currently supported FSRT are:

● top_N - this technique assigns weight to each feature in the space and retains only
the best N features. N could be a number, e.g. 5000, or a percentage, e.g. 5%, of the
feature space;

● prune - this technique selects only features that are common for more
than “prune_below” and less than “prune_above” documents;

● chi2 - this technique implements the χ2 distribution6 with one degree of freedom to
test how important one feature is for a given category/label. For example, chi2_100
selects the 100 best (according to the χ2 score) for each category in the model.

Classifiers
Once the feature space is defined and optionally reduced, each classifier (classification
algorithm) builds a normalized weighted structure for each category. This structure is either
represented as a vector in the feature space (for centroid classifier) or as a probability
distribution (for naive bayesian and entropy classifiers). The categorization model is actually
a serialized version of the set of all weighted structures.

Building a model

Firstly, the i-Publisher user decides on the model feature type and dimension reduction
techniques. Secondly, the i-Publisher backend sends the request for building a specific
model to an input queue.

The ACT then checks out the message and builds a model for each of the available/
configured classifiers (algorithms). This process fetches the training data, builds the feature
space, reduces it, forms the vectors for each category and normalizes them. The set of
vectors is then serialized and sent to an output queue.

Finally, i-Publisher fetches the built model from the output queue, saves it in the database
and marks the model as “ready-to-be-used”.

The schema below outlines the main steps in the building of a categorization model. It is
important to note that each classifier uses its own model.

6 http://en.wikipedia.org/wiki/Chi-squared_distribution

page 7 / 20

DELIVERABLE 3.1

Using a model
The process of using a model consists of the following steps:

1. the user (i-Publisher, i-Librarian, or anonymous from another ATLAS component)
triggers and action for predicting the categories of one or more content items;

2. according to the configuration of the initiating component, the categorization action
is either immediately sent for execution or queued. The second option is useful
when a batch of content items are being categorized. The optimal batch size was
experimentally set to 128 content items;

3. for each classifier
a. each document is presented with its features (matching the feature type of the

model);
b. a normalized weighted structure (vector or probability distribution) is created

for each document;
c. each structure is “matched” against each category in the model and a

category score is calculated. The score is either a distance or a probability;
d. the result contains the score for each category for each document in the

batch.
4. the results from all classifiers are assembled and the top-N categories for each

document in the batch are sent to an output queue;
5. i-Publisher then connects the messages from that output queue and stores the

results in the database.

The diagram below depicts the process of predicting categories for one document or a batch

page 8 / 20

DELIVERABLE 3.1

of documents.

Algorithms
The categorization algorithms described here are available in the ACT. Individual evaluation
for each of the algorithms has been performed on the Reuters-21578 corpus. The results of
the evaluations can be found in the “Performance results” subchapter.

CFC and CFC-modif
The Class-Feature-Centroid (CFC) and its modified version (CFC-modif) classifiers are
based on the work by Hu Guan, Jingyu Zhou and Minyi Guo from the Shanghai Jiao Tong
University.

The Centroid-based approaches feature short training time and testing time due to their
computational efficiency. However, the accuracy of centroid-based classifiers is inferior to
SVM, mainly because the centroids found during construction are far from perfect locations.

The Class-Feature-Centroid (CFC) classifier for multi-class, single-label text categorization is
built from two important class distributions: inter-class term index and inner-class term index.
CFC defines a novel combination of these indices and employs a denormalized cosine
measure to calculate the similarity score between a text vector and a centroid. Experiments

page 9 / 20

DELIVERABLE 3.1

on the Reuters-21578 corpus show that CFC consistently outperforms the state-of-the-art
SVM classifiers on both micro-F1 and macro-F1 scores. CFC is more effective and robust
than SVM particularly when data is sparse.

Relative entropy
This classifier, based on the Kullback–Leibler divergence7 (also information divergence,
information gain, relative entropy, or KLIC), is a non-symmetric measure of the difference
between two probability distributions - P and Q. KL measures the expected number of extra
bits required to code samples from P when using a code based on Q, rather than using a
code based on P. Typically, P represents the "true" distribution of data, observations, or a
precisely calculated theoretical distribution. The measure Q typically represents a theory,
model, description or an approximation of P.

The text categorization is performed using the Kullback-Leibler distance between the
probability distribution of the document and the probability distribution of each category.
Using the same representation of categories, experiments show a significant improvement
when the above mentioned method is used. The KLD method achieves substantial
improvements over the tfidf8 performing method.

Naive Bayesian
In simple terms, a naive Bayes classifier9 assumes that the presence (or absence) of a
particular feature of a class is unrelated to the presence (or absence) of any other feature,
given the class variable. For example, a fruit may be considered to be an apple if it is red,
round, and about 4" in diameter. Even if these features depend on each other or upon the
existence of the other features, a naive Bayes classifier considers all of these properties to
independently contribute to the probability of this fruit being an apple.

Despite their naive design and apparently over-simplified assumptions, naive Bayes
classifiers have worked quite well in many complex real-world situations. In 2004, analysis
of the Bayesian classification problem has shown that there are some theoretical reasons
for the apparently unreasonable efficacy of naive Bayes classifiers. An advantage of the
naive Bayes classifier is that it only requires a small amount of training data to estimate the
parameters (means and variances of the variables) necessary for classification. Because
independent variables are assumed, only the variances of the variables for each class need
to be determined and not the entire covariance matrix. Our experiments showed that using
Naive Bayesian classifier in a combination with Laplace smoothing10 significantly improves
the quality of the classifier.

LDA (experimental)

7 http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
8 http://en.wikipedia.org/wiki/Tf*idf
9 http://en.wikipedia.org/wiki/Naive_Bayes_classifier
10 http://en.wikipedia.org/wiki/Laplace_smoothing

page 10 / 20

http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/Tf*idf
http://en.wikipedia.org/wiki/Tf*idf
http://en.wikipedia.org/wiki/Tf*idf
http://en.wikipedia.org/wiki/Tf*idf
http://en.wikipedia.org/wiki/Tf*idf
http://en.wikipedia.org/wiki/Tf*idf
http://en.wikipedia.org/wiki/Tf*idf
http://en.wikipedia.org/wiki/Tf*idf
http://en.wikipedia.org/wiki/Tf*idf
http://en.wikipedia.org/wiki/Tf*idf
http://en.wikipedia.org/wiki/Tf*idf
http://en.wikipedia.org/wiki/Tf*idf
http://en.wikipedia.org/wiki/Tf*idf

DELIVERABLE 3.1

LDA is an experimental algorithm, which uses generative model11 for dimension reduction
and applies machine learning techniques to obtain the appropriate categories. The
experimental algorithm used for space reduction is based on the Latent Dirichlet Allocation
(LDA) model developed by David Blei. In the this approach we treat LDA as an algorithm
which reduces the number of features representing a document down to the K ’most
meaningful’. LDA represents each document as the vector of those features (all features
values sum to one, most significant one has the highest value). Suppose we have assigned
those LDA features to the text. Such an assignment is a vector in RK, where K is the
number of features. In this case we face a typical problem of mapping K LDA features to N
categories. You can consider this task the problem of the machine learning and use such
methods as support
vector machine, k nearest neighbors, etc.

Bisecting K-Means clustering
K-means (MacQueen, 1967) is one of the simplest unsupervised learning algorithms that
solve the well known clustering problem. The main idea is to define k centroids, one for
each cluster. These centroids should be placed in a smart way because a different location
causes a different result. According to the literature, bisecting k-means clustering has better
performance than the standard k-means algorithm and comparable quality to the hierarchical
clustering.

Currently, the ACT implements the bisecting k-means for clustering and in-house topic
modelling technique. LDA topic modelling will be also available in the ACT by the end of the
project.

Adding a new classifier
The ACT implementation is OSGi12-based and adding a new classifier actually
means that a new service, implementing the ISpecificAutomaticCategorizationService
(com.tetracom.atlas.textmining.categorization.api.service.ISpecificAutomaticCategorizationS
ervice) interface should be made available in the ACT OSGi container.

TheISpecificAutomaticCategorizationService interface has two self-explanatory methods
buildModel and useModel:

11 Generative model for a document is based on the assumption, that documents can be created
by sampling from hidden random variables, which describe theirs structure. Generative model is a
concept drawn from statistical models and so topics models are examples implementing broader
class of formalisms used to describe the different phenomena (e.g. modeling of the DNA, proteins,
evolution of the population).
12 http://www.osgi.org/Main/HomePage

page 11 / 20

DELIVERABLE 3.1

Sample implementation of the classifier service can be found in the following plugins:
● com.tetracom.atlas.textmining.categorization.algorithms;
● com.tetracom.atlas.textmining.categorization.mallet.lda;
● com.tetracom.atlas.textmining.categorization.mulan;
● com.tetracom.atlas.textmining.categorization.unizd.

Testing
Series of evaluation and regression tests have been performed in order to ensure the stable
consistent high-quality work of the automatic categorization tool in ATLAS. This chapter
describes the testing environment and corpuses, provides an overview of the performance
and quality results and finally elaborates on regularly executed regression test scenarios.

Training/Testing corpora
The ATLAS ACT is theoretically language independent and it should not matter what
training/test corpus will be used for the evaluation of the tool. Furthermore, there are no
freely-available corpora, annotated for the text categorization task. Therefotre we focus the
initial evaluation of the ACT on the Reuters-21578 corpus.

Reuters-21578 collection Apte' includes 12,902 documents for 90 classes, with a fixed
splitting between test and training data (3,299 vs. 9,603). The categories are presented as
different directories. The set of files (one for each document,) associated with the target
category, are stored in each directory. The non-labeled documents from the Reuters
corpus are stored in the directory “unknown”. The document file names are increasing non-
repeating numbers for fast document indexing. Two different main directories (test and
training) store the training/testing data.

The corpus was firstly imported in ATLAS in the form of content items from two content types
- ReutersTrainingItem (7768) and ReutersTestItem (3019 items). The items in the “unknown”

page 12 / 20

DELIVERABLE 3.1

category were excluded from the experiments. Secondly, the imported content items were
processed by the English LPC and various categorization models were built.

The evaluation procedure compares the manually categorized test items to the automatically
suggested categories (folders). The precision, recall and f1-measure are provided for each
category in the model. The evaluation is completed with the micro and macro f1-measures
for the whole model.

Performance results
The conducted experiments aim:

● to ensure that the implementation and integration of different classifiers is properly
done and the quality of each individual classifier is inline with the state-of-the-art
results;

● to completely exploit the semantic annotations made available from WP4 (Language
Processing Chain) and to study the influence of the feature type on the classifier
quality.

A table with detailed information on each of the experiments can be found at
https://docs.google.com/spreadsheet/ccc?
key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E.

The following conclusions can be made based on the presented results:
● all implemented classifiers perform properly and their quality is comparable with the

state-of-the-art achievements on the Reuters-21578 corpus;
● naive-bayesian classifier is more suitable when the number of features is small (less

than 1000); the relative entropy and cfc-modif provide better results with the feature
space is bigger (more than 4000 features);

● as expected, reducing the feature space decreases the overall quality of the model
but the deviation is acceptable, especially when the feature space is reduced 5 or 10
times;

page 13 / 20

https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E
https://docs.google.com/spreadsheet/ccc?key=0AuWVg_Q7c1mudExmNVJBMHgyTXdaeWhiTGhlcEZlX1E

DELIVERABLE 3.1

● all models based on head nouns perform worse than token-based models. The

quality of the head nouns models is not significantly worse than the quality of
the token-based models; thus head nouns models could be an option for ATLAS
installations on modest hardware;

● the quality of models using the chi-2 feature reduction technique is comparable (or
slightly better) than the tf.idf top_N feature reduction. However, the complexity of the
chi-2 test is O(n2). One should use the chi-2 reduction having in mind that the models
are (re)built rarely;

Regression tests
The quality of the results of the categorization engine strongly depends on the quality of the
training and test data. In order to assess the quality of the categorization algorithms, the
tests are performed on the well-known and scientifically recognized Reuters-21578 corpus.
We record a precision, recall and f1-measure for all 90 categories, as well as the micro-
and macro- f1-measure for the whole data set and use them as a template to be compared
with the results provided by the newly built model. A test fails if the difference between
the recorded and the newly calculated f1-measure is greater than a predefined constant
(threshold).

We test the multilingual aspects of the automatic categorization for each of the 80 top-level
categories used in i-Librarian. The automatic test builds the categorization models for each
language and checks their validity by categorizing the training documents. This test fails if
the f1-measure is not in a predefined interval for each category. The upper threshold for this
predefined interval is set to 0.93 in order to avoid model overfitting.

page 14 / 20

DELIVERABLE 3.1

Conclusion
Automated text categorization is an important technique for many web applications, such
as document indexing, document filtering and cataloging web resources. Many different
approaches have been proposed for the automated text categorization problem. Despite
the great demand for such functionalities integrated in the modern CMS, there are no robust
production- and integration- ready solutions.

The ATLAS automatic text categorization features message-based network distributed
communication; various feature types for the categorization feature space; various feature
space reduction techniques; extensible classifier (algorithm) infrastructure; three available
classifiers and one clustering algorithm; model builder; model applier and results assembler.
Finally, ACT is seamlessly integrated in ATLAS in the backend and GUI layers.

References
Ferrucci, A. Lally, 2004, UIMA: an architectural approach to unstructured information
processing in the corporate research environment. Natural Language Engineering 10, No. 3-
4, 327-348

G. Tsoumakas, I. Katakis, 2007, Multi-Label Classification: An Overview, International
Journal of Data Warehousing and Mining, 3(3):1-13.

Marmanis, Babenko, 2009: Algorithms of the Intelligent Web. Manning, 2009.

Hu Guan , Jingyu Zhou , Minyi Guo, 2009, A class-feature-centroid classifier for text
categorisation, Proceedings of the 18th international conference on World wide web, Madrid,
Spain, April 20-24, 2009 [doi: 10.1145/1526709.1526737]

Qian, H. "Relative Entropy: Free Energy Associated with Equilibrium Fluctuations and
Nonequilibrium Deviations." 8 Jul 2000. http://arxiv.org/abs/math-ph/0007010.

Bigi, Brigitte, 2003, Using Kullback-Leibler Distance for Text Categorization, Advances
in Information Retrieval, Lecture Notes in Computer Science vol. 2633. Springer Berlin /
Heidelberg.

Peter Harrington (2012). Machine Learning in Action. Manning Publications Co.

page 15 / 20

http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010
http://arxiv.org/abs/math-ph/0007010

DELIVERABLE 3.1

Appendix A: i-Publisher user interface
i-Publisher is the front-most ATLAS component providing the GUI (graphical user interface)
between the ATLAS users and the lower functional layers of the system. This chapter
describes how the ACT is integrated in i-Publisher and which are the key functionalities,
related to the test categorization in ATLAS content management system.

Taxonomy editor
As a modern CMS, ATLAS provides means for creating and further managing one or more
taxonomies or flat list of keywords: the categorization labels are hierarchically organized; flat
keywords lists are treated in the same way as the tree-like keywords; there is no limitations
for the number of taxonomies, depth of their hierarchy or the number of keywords in each
structure.

The categorization structures are common for all web sites in a given domain and are
managed from the “Domain” editor. The user is provided with drag-and-drop UI for managing
the hierarchy of keywords and with a simple translation dialog to translate the keywords in
the multilingual domains. The screenshots below show the taxonomy editor.

“Domain” editor » “Categorization” shortcut » List of available taxonomies

page 16 / 20

DELIVERABLE 3.1

“Taxonomy” editor - toolbar buttons provide means to create new and reorder existing
keywords; F2 renames/translates the selected keyword; use drag-and-drop to manage the

hierarchy between the keywords.

At this stage, the taxonomies can be used for manually categorized content items to form
keywords-based navigation widgets.

Manual categorization of a content item

page 17 / 20

DELIVERABLE 3.1

Definition of navigation widget based on categorization taxonomy

Training a model
Very few content management systems provide a simple user interface for building custom
models for automatic text categorization. Most of the automatic categorization functionalities,
integrated in the other CMS, use external services, such as AlchemyAPI13 or OpenCalais14.
ATLAS project does not replicate the already available services but provides the ATLAS
ACT that can be easily tuned via simple GUI, to each individual client or entity. Using
the ATLAS ACT tool, a user can easily build models for automatic text categorization, for
example, for the domain of biomechanics, black holes or cookery.

The process of building such a tool includes:
1. an existing taxonomy, built with the “Taxonomy editor”;
2. a training/ testing content items. The training content items are first processed by the

appropriate LPC and then the results are used to train a model;
3. customization/fine-tuning of the model. Here the user can decide on model-specific

parameters, such as feature types, feature space reduction techniques, filtering on
the initial set of categories (e.g. omit categories with less than 5 training content
items).

The following screenshot shows how a model is firstly configured and then built.

13 http://www.alchemyapi.com/
14 http://www.opencalais.com/

page 18 / 20

DELIVERABLE 3.1

“Taxonomy” editor » “Automatic categorization” shortcut » Selecting the set of training items

“Taxonomy” editor » “Automatic categorization” shortcut » Overview of the training content

“Taxonomy” editor » “Automatic categorization” shortcut » Setting the model parameters

A separate model is built for every available classifier (algorithm) for each of the available
languages. The automatic categorization functionality becomes available when the first
model for a language is built. The categories production process is triggered by saving a
content item or manually, through the i-Publisher GUI. The latest option is available for a
single content item or a list of content items.

Categorization widget
The results of the automatic categorization are visible in i-Publisher, in the “Categorization”
tab of the “Content item” editor. Furthermore, these result can be visualized in a website
using a “Categorization” widget. This widget is created for each content item.

page 19 / 20

DELIVERABLE 3.1

Clustering widget
The “Clustering” widget shows the results of the document clustering features of the ACT.

Backend evaluation tool
If the user/organization can provide a set of testing item,s the ACT can conduct a formal
evaluation of the built models. The backend evaluation tool downloads the test content,
processes it through the appropriate LPCs and runs the automatic categorization using
the model and the processed data. Then the manual categorization is compared with
the automatically suggested. The precision, recall and f1-measure are provided for each
category in the model. The evaluation finishes with the micro and macro f1-measures for the
whole model.

page 20 / 20

